作业帮 > 数学 > 作业

已知平面向量a,b,c满足a+b+c=0,且向量a与向量b的夹角余弦值为1/5,向量b与向量c的夹角余弦值为-1/3,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 08:58:10
已知平面向量a,b,c满足a+b+c=0,且向量a与向量b的夹角余弦值为1/5,向量b与向量c的夹角余弦值为-1/3,
|b|=1,求向量a*向量c的值
已知平面向量a,b,c满足a+b+c=0,且向量a与向量b的夹角余弦值为1/5,向量b与向量c的夹角余弦值为-1/3,
如果是数量积则:a*b=|a|.|b|cos(a,b)=|a|.|b|.(1/5)
b*c=|b|.|c|cos(b,c)=|b|.|c|.(-1/3)
a*c=|a|.|c|cos(a,c)
由a+b+c=0可知,向量a、b、c构成了首尾相连的三角形,说白了就是解三角形
令向量a、b、c分别对应三角形的三条边A,B,C,对应的角也是角A角B角C
则cos角C=1/5 cos角A=-1/3,则由:角A+角B+角C=180度可以求出cos角B,
cos角B求出来了,又因为三角形的B边长=1,所以结合角度就可以求出
边A边C,这样a*c=|a|.|c|cos角B 就解出来了