设向量a,b,c满足a+b+c=0,证明a·b+b·c+c·a=-1/2(|a|^2+|b|^2+|c|^2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 02:41:09
设向量a,b,c满足a+b+c=0,证明a·b+b·c+c·a=-1/2(|a|^2+|b|^2+|c|^2)
前面的题目也是你的?这个很好证明的:
a+b+c=0,故:(a+b+c)·(a+b+c)=0,即:a·(a+b+c)+b·(a+b+c)+c·(a+b+c)
=|a|^2+a·b+a·c+b·a+|b|^2+b·c+c·a+c·b+|c|^2=(|a|^2+|b|^2+|c|^2)+2a·b+2b·c+2c·a=0
即:a·b+b·c+c·a=-(|a|^2+|b|^2+|c|^2)/2
a+b+c=0,故:(a+b+c)·(a+b+c)=0,即:a·(a+b+c)+b·(a+b+c)+c·(a+b+c)
=|a|^2+a·b+a·c+b·a+|b|^2+b·c+c·a+c·b+|c|^2=(|a|^2+|b|^2+|c|^2)+2a·b+2b·c+2c·a=0
即:a·b+b·c+c·a=-(|a|^2+|b|^2+|c|^2)/2
设向量a,b,c满足|a|=|b|=1,a·b=1/2,(a-c)(b-c)=0,则|c|的最大值等于
设a,b,c>0,证明:a^2/b+b^2/c+c^2/a>=a+b+c
已知向量a,b,c满足|a|=2 a/|a|+b/|b|=(a+b)/|a+b|,(a-c)*(b-c)=0,则|c|的
行列式证明|b+c c+a a+b| | a b c||a+b b+c c+a| = 2 |c a b||c+a a+b
请问数学题;设向量a,b,c满足a+b+c=0,且a⊥b,|a|=1,|b|=2,则|c|^2=?
设实数a b c满足a平方+b平方+c平方=1 证明|a-b|,|b-c|,|c-a|中必有一个《2分之根号2
向量计算设a+b+c=0,|a|=3,|b|=1,|c|=2,则a.b+b.c+c.a=?字母都是向量
请证明(a×b)·[(b×c)×(c×a)]=[a·(b×c)],a,b,c均为向量
已知a,b,c是正实数,满足a^2=b(b+c),b^2=c(c+a).证明:1/a+1/b=1/c
(1)设实数a、b、c满足|a-2b|+√(3b-c)+(3a-2c)^2=0,则a:b:c=________.
设向量a、b、c满足关系式a=d-c,b=2c-d,且a垂直于b及a+b=c,|a|=|b|=1,若m为c、d的
设(axb)·c=2,则[(a+b)x(b+c)]·(c+a)=