作业帮 > 数学 > 作业

一道高二的曲线方程已知直角坐标平面内的点A(1,0)与直线l:x=3.如果动点P到点A的距离与到直线l的距离之和等于4,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 02:58:51
一道高二的曲线方程
已知直角坐标平面内的点A(1,0)与直线l:x=3.如果动点P到点A的距离与到直线l的距离之和等于4,求点P的轨迹方程.
一道高二的曲线方程已知直角坐标平面内的点A(1,0)与直线l:x=3.如果动点P到点A的距离与到直线l的距离之和等于4,
设P(x,y)
|PA|+|P点到l的距离|=4
√[(x-1)²+y²]+|x-3|=4
当x≥3时,√[(x-1)²+y²]+x-3=4
√[(x-1)²+y²]=7-x
(x-1)²+y²=49-14x+x²
x²-2x+1+y²=49-14x+x²
∴y²+12x-48=0(此时3≤x≤4)
当x<3时,√[(x-1)²+y²]-x+3=4
√[(x-1)²+y²]=1+x
(x-1)²+y²=1+2x+x²
x²-2x+1+y²=1+2x+x²
∴y²-4x=0(此时0≤x<3)
综上,所求轨迹方程为y²+12x-48=0(3≤x≤4)
y²-4x=0(0≤x<3)
点到直线的距离公式d=|ax0+by0+c|/√(a²+b²)
两点间的距离公式d=√[(x1-x2)²+(y1-y2)²]