作业帮 > 数学 > 作业

球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:35:53
球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱锥S-ABC的体积的最大值为 ___ .
球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱
由题意画出几何体的图形如图
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S-ABC的体积最大.
∵△ABC是边长为2的正三角形,所以球的半径r=OC=
2
3CH=
2
3
3.
在RT△SHO中,OH=
1
2OC=
1
2OS
∴∠HSO=30°,求得SH=OScos30°=1,
∴体积V=
1
3Sh=
1


3
4×22×1=

3
3.
故答案是

3
3.
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S-ABC的体积最大.