球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:35:53
球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱锥S-ABC的体积的最大值为 ___ .
由题意画出几何体的图形如图
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S-ABC的体积最大.
∵△ABC是边长为2的正三角形,所以球的半径r=OC=
2
3CH=
2
3
3.
在RT△SHO中,OH=
1
2OC=
1
2OS
∴∠HSO=30°,求得SH=OScos30°=1,
∴体积V=
1
3Sh=
1
3×
3
4×22×1=
3
3.
故答案是
3
3.
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S-ABC的体积最大.
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S-ABC的体积最大.
∵△ABC是边长为2的正三角形,所以球的半径r=OC=
2
3CH=
2
3
3.
在RT△SHO中,OH=
1
2OC=
1
2OS
∴∠HSO=30°,求得SH=OScos30°=1,
∴体积V=
1
3Sh=
1
3×
3
4×22×1=
3
3.
故答案是
3
3.
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S-ABC的体积最大.
球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,
已知A、B、C三点不共线,M、A、B、C四点共面,则对平面ABC外的任一点O,有OM=12OA+13OB+tOC
A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为 ___
已知△ABC的平面直观图△A'B'C'是边长为a的正三角形,
在半径为3的球面上有A.B.C三点,∠ABC=90°,BA=BC,球心O到平面ABC的距离是3√2/2 ,B.C两点的球
如图,A.B.C.D.是圆O上的四点,△ABC与△DCB全等吗?为什么?
设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD
已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为π2,则球心O到平面ABC的距离为( )
如图,在半径为3的球面上有A、B、C三点,∠ABC=90°,BA=BC,球心O到平面ABC的距离是322,则B、C两点的
已知A、B、C、D为同一球面上的四点,且连结每两点间的线段长都等于2,则球心O到平面BCD的距离等于
A.B.C.D.是圆O上的四点,三角形ABC与三角形DCB全等吗?为什么?
如图,A,B,C,D是圆O上的四点,三角形ABC与三角形DCB全等吗?为什么?