已知命题:“若数列{an}是等差数列,则数列bn=a1+a2+a3+...+an/n也是等差数列”.类比这一性质,你能得
若数列An是等差数列,则有数列Bn=a1+a2+a3+a4+...+an/n也是等差数列,类比上述性质,相应的,若数列C
若数列{an}(n∈N+)是等差数列,则bn=(a1+a2+a3+...+an)/n(n∈N+)也是等差数列
设数列an,bn满足:bn=(a1+a2+a3+a4+...+an)/n,若bn是等差数列,求证an也是等差数列
已知:bn=(a1+2a2+...+nan)/(1+2+...+n),数列an成等差数列的充要条件是bn也是等差数列.
已知数列{an}和{bn}满足关系:bn=(a1+a2+a3+…+an)/n,(n∈N*).若{bn}是等差数列,求证{
若数列{an},则有数列bn=a1+a2+a3+**an/n也为等差数列,数列{an}是等比数列,且cn>0,则有dn=
1.已知数列{an}是等差数列,a1=2,a1+a2+a3=12,令bn=3^an,求数列{bn}的前n项和Sn.
已知数列{an}是等差数列,a1=1,a1+a2+a3=12.令bn=3^an,求数列{bn}的前n项和sn.
已知数列{an}是等差数列,且a1=2,a1+a2+a3=12 令bn=an*3^n,求{bn}的前n项和
已知数列{an}是等差数列,且a1=2,a1+a2+a3=12 (1)求数列{an}的通项公式.(2)令bn=anX^n
已知数列{an}是等差数列,且bn=an+a(n-1),求证bn也是等差数列
已知数列an是等差数列,a1+a2+a3=15,数列bn是等比数列,b1b2b3=27.