作业帮 > 数学 > 作业

求函数u = x² + y² + z²满足约束条件x² + y²= z

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 15:13:34
求函数u = x² + y² + z²满足约束条件x² + y²= z 和x + y + z = 1的条件极值.
求函数u = x² + y² + z²满足约束条件x² + y²= z
用拉格朗日乘数法计算:令L(x,y,z,a,b) = x² + y² + z² + a(x² + y² - z) + b(x + y + z -1),分别对x,y,z,a,b求一阶导数并令它们等于0,得到:x:2x + 2ax + b = 0;y:2y + 2ay + b = 0;z:2z - a + b = 0;a:x² + y² - z = 0;b:x + y + z -1 = 0.从而可解得多组解(x,y,z,a,b)(具体计算过程请自己计算),这些解都是可能的极值点.