是否存在幂集与自然数集等势的集合?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 04:56:48
是否存在幂集与自然数集等势的集合?
考虑一个交换群G,对于G中任意元素a有a*a=e,e为单位元素,那么
猜想:G的基K的幂集与G等势.
比如:K={a,b,c},G={e,a,b,c,ab,ac,bc,abc},card(K)=3,card(G)=8=2的3次方.
如果这个猜想是正确的,那么全体自然数对于异或运算构成这样一个群,单位元是0,则此群的基就是满足我问题中条件的集合?
考虑一个交换群G,对于G中任意元素a有a*a=e,e为单位元素,那么
猜想:G的基K的幂集与G等势.
比如:K={a,b,c},G={e,a,b,c,ab,ac,bc,abc},card(K)=3,card(G)=8=2的3次方.
如果这个猜想是正确的,那么全体自然数对于异或运算构成这样一个群,单位元是0,则此群的基就是满足我问题中条件的集合?
是否存在幂集与自然数集等势的集合?
不存在.因为不存在比自然数集小的无限集(基础集合论知识),自然数是唯一的可数的无限集.因此不存在一个运算使得自然数集成为一个二阶循环交换群.
是否存在比连续统大的集合?
存在(基础集合论知识).例:连续统的幂集比连续统大.连续统的幂集的幂集比连续统的幂集大.这些都属于不可数的无限集.
"从等势的角度来说,只存在两种无穷大的数集:自然数和连续统."是错误的,可能原话的意思是可数与不可数两种.
对你的短消息的回答:
用无限位的所有二进位数表示的集,可以看出这个集其实并不与自然数集等势,因为如果数一下它的元素个数会发现共有2^N 个元素,所以它与自然数的幂集等势,即与连续统等势.就算用任何进位数表示,结果都是一样.
你可以在书中找到这样一个反证法:无论在有理数集与无限位的小数集之间作出怎样的一一对应,都可以找到一个无限位的小数,而且并没有一个有理数与之对应.因此有理数集与无限位的小数集不存在一一对应.同理可证自然数集与二进位数集的情况.
因此如果二进位数集能成为一个二阶循环交换群的话,那它的基就会与自然数集等势.
不存在.因为不存在比自然数集小的无限集(基础集合论知识),自然数是唯一的可数的无限集.因此不存在一个运算使得自然数集成为一个二阶循环交换群.
是否存在比连续统大的集合?
存在(基础集合论知识).例:连续统的幂集比连续统大.连续统的幂集的幂集比连续统的幂集大.这些都属于不可数的无限集.
"从等势的角度来说,只存在两种无穷大的数集:自然数和连续统."是错误的,可能原话的意思是可数与不可数两种.
对你的短消息的回答:
用无限位的所有二进位数表示的集,可以看出这个集其实并不与自然数集等势,因为如果数一下它的元素个数会发现共有2^N 个元素,所以它与自然数的幂集等势,即与连续统等势.就算用任何进位数表示,结果都是一样.
你可以在书中找到这样一个反证法:无论在有理数集与无限位的小数集之间作出怎样的一一对应,都可以找到一个无限位的小数,而且并没有一个有理数与之对应.因此有理数集与无限位的小数集不存在一一对应.同理可证自然数集与二进位数集的情况.
因此如果二进位数集能成为一个二阶循环交换群的话,那它的基就会与自然数集等势.
两个集合的元素之间如果存在一一对应的关系,称这两个集合等势.试证明:自然数集N与整数集Z是等势的.
所有自然数的排列的集合与连续统等势怎么证明的.
集合论问题如何证明自然数集合的幂集的势是C(连续基数)
数学书中自然数集用N表示,不包括零的自然数的集合用N*表示,自然数是大于零的整数,那N与N*
为什么N+(正整数集)和N(自然数集)等势,集合内元素一样多?
【离散数学】任一无限集合都存在与自己等势的真子集——这句话是错的吧?
类似罗素悖论的问题如A是一个成立的无限自然数集,它的子集B、C、D都是无限自然数集.B、C、D……集合于A中,会存在这样
是否存在实属A,使得不等式组:2x^2+(5+2a)x+5a0的整数解的集合是单元素集{-2}?
设全集U=R,集合A={1,3,-x},B={1,x+2},是否存在实数x,使得B∪CuB=A?存在则求出x的值与集合A
构造一个"全体有理数集合与全体自然数集合"的一一对应
当集合A与集合B的交集是空集时,集合A与集合B的并集是什么
推理证明:任何自然数都是整数 存在自然数 所以存在整数(实数集合为R)