任取12个整数,证明一定有两个数之差是11的倍数
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 12:01:18
任取12个整数,证明一定有两个数之差是11的倍数
这道题运用的是抽屉原理 但怎么解啊 抽屉是什么 物体又是什么
这道题运用的是抽屉原理 但怎么解啊 抽屉是什么 物体又是什么
证明:任取一个自然数,则其除以11所得的余数只能是0,1,2,3,4,5,
6,7,8,9,10中的一个,共11种类型的自然数(按11的mod来分类)
任取12个自然数,则由抽屉原理,至少有两个自然数除以11的余数相同
则这两个数的差一定是11的倍数(11k+r)-(11m+r)=11(k-m)
抽屉原理
日常生活中,人们只要稍加留意,就不难发现某些带有规律性的事物.比如,将10个苹果放进9个抽屉,那么肯定有一个抽屉里放进了两个或更多的苹果.这是大家都能理解的一个简单道理,该道理即被称为抽屉原理或鸽笼原理(以鸽子比做苹果,以笼子比做抽屉).抽屉原理的一般形式为:将n+1个苹果放进n个抽屉里,则至少有一个抽屉里放进了两个或两个以上的苹果.
千万别小看这个既平常又简单的原理,许多有趣的问题,都可以用抽屉原理来 解决.比如,任意13个人中,必然有2个人是在同一个月份出生的.只需要将13个人看成苹果,12个月份看成抽屉,于是由抽屉原理就得到了结论.再比如,在边长为1的正方形内,任意给定5个点,则其中必有2个点,它们之间的距离不会大于1/2 .证明这个问题只需要将正方形分为面积相等的4等分,则4个小正方形的边长都是1/2,每个小正方形内任意两点之间的距离均不会大于大正方形的对角线长1/2.将5个点看成苹果,4个小正方形看成抽屉,由抽屉原理,必然有一个小正方形中有2个点,于是这两个点之间的距离不大于1/2.
6,7,8,9,10中的一个,共11种类型的自然数(按11的mod来分类)
任取12个自然数,则由抽屉原理,至少有两个自然数除以11的余数相同
则这两个数的差一定是11的倍数(11k+r)-(11m+r)=11(k-m)
抽屉原理
日常生活中,人们只要稍加留意,就不难发现某些带有规律性的事物.比如,将10个苹果放进9个抽屉,那么肯定有一个抽屉里放进了两个或更多的苹果.这是大家都能理解的一个简单道理,该道理即被称为抽屉原理或鸽笼原理(以鸽子比做苹果,以笼子比做抽屉).抽屉原理的一般形式为:将n+1个苹果放进n个抽屉里,则至少有一个抽屉里放进了两个或两个以上的苹果.
千万别小看这个既平常又简单的原理,许多有趣的问题,都可以用抽屉原理来 解决.比如,任意13个人中,必然有2个人是在同一个月份出生的.只需要将13个人看成苹果,12个月份看成抽屉,于是由抽屉原理就得到了结论.再比如,在边长为1的正方形内,任意给定5个点,则其中必有2个点,它们之间的距离不会大于1/2 .证明这个问题只需要将正方形分为面积相等的4等分,则4个小正方形的边长都是1/2,每个小正方形内任意两点之间的距离均不会大于大正方形的对角线长1/2.将5个点看成苹果,4个小正方形看成抽屉,由抽屉原理,必然有一个小正方形中有2个点,于是这两个点之间的距离不大于1/2.
证明任取6个自然数,必有两个数的差是5的倍数.
证明:任取8个自然数,必有两个数的差是7的倍数.
证明:任取7个自然数,必然有两个的差是6的倍数?
任取8个自然数,必有两个数的差是7的倍数.
任取11个自然数,那么其中至少有两个数的差是10的倍数,
任取11个自然数,那么其中至少有两个数的差是10的倍数.
任意取______个自然数,才能保证至少有两个数之差是7的倍数.
求证:任意6个整数中 必有两个数的差是5的倍数.
任意取11个自然数,那么至少有两个数的差是10的倍数.哪几个数?
任取4个不同的自然数,必有两个数的差是3的倍数,为什么?
"任取11个自然数,那么其中至少有两个数的差是10的倍数."是什么类型的?应用还是判断,如果是应用怎么答?
至少取几个自然数才能保证它们当中一定有两个数的差是5的倍数