△ABC外接圆半径R=1,且sin^A-sin^C=(根号2-a分之b)sinAsinB,求△ABC面积的最大值.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 00:08:02
△ABC外接圆半径R=1,且sin^A-sin^C=(根号2-a分之b)sinAsinB,求△ABC面积的最大值.
正弦定理
a/sinA=b/sinB=c/sinC=2R
a=2sinA,b=2sinB,c=2sinC
sin²A-sin²C=(√2-b/a)sinAsinB
a²/4-c²/4=(√2-b/a)ab/4
a²-c²=√2ab-b²
a²+b²-c²=√2ab
余弦定理
cosC=(a²+b²-c²)/(2ab)=(√2ab)/(2ab)=√2/2
C=45度
A+B=135度
S△ABC=1/2absinC=1/2×2sinA×2sinB×√2/2=√2sinAsinB
=√2sin(135-B)sinB=sinBcosB+sin²B
=1/2sin2B+1/2(1-cos2B)
=1/2(sin2B-cos2B)+1/2
=√2/2sin(2B-π/4)+1/2
sin(2B-π/4)=1即
2B-π/4=π/2即B=3π/8时
S有最大值=(√2+1)/2
a/sinA=b/sinB=c/sinC=2R
a=2sinA,b=2sinB,c=2sinC
sin²A-sin²C=(√2-b/a)sinAsinB
a²/4-c²/4=(√2-b/a)ab/4
a²-c²=√2ab-b²
a²+b²-c²=√2ab
余弦定理
cosC=(a²+b²-c²)/(2ab)=(√2ab)/(2ab)=√2/2
C=45度
A+B=135度
S△ABC=1/2absinC=1/2×2sinA×2sinB×√2/2=√2sinAsinB
=√2sin(135-B)sinB=sinBcosB+sin²B
=1/2sin2B+1/2(1-cos2B)
=1/2(sin2B-cos2B)+1/2
=√2/2sin(2B-π/4)+1/2
sin(2B-π/4)=1即
2B-π/4=π/2即B=3π/8时
S有最大值=(√2+1)/2
在三角形ABC的外接圆半径为R,且2R(sin^2A-sin^2C)=(根号2倍a-b)sinB,求三角形ABC面积的最
已知三角形ABC的外接圆半径为R=2,且2R(sin^A-sin^C)=(根号2 a-b)sinB
已知三角形ABC的外接圆半径为R,且满足2R(sin平方A-sin平方C)=(√2a-b)sinB.求三角形ABC面积的
三角形ABC内接于半径为R的圆,且2R(sin平方A-sin平方C)=((根号2)·a-b)·sinB求三角形面积最大值
半径为R的圆外接于△ABC,且2R(sin^2A-sin^2C)=(根号3*a-b)sinB,求角C
半径为R的圆外接与三角形ABC 且2R(sin^2A-sin^2c)=(根号3*a-b)sinB求角C和△abc的面积最
1,如果△ABC内接于半径为R的圆,且2R(sin²A-sin²C)=(根号2-b)sinB,求△A
半径为R的圆内接与三角形ABC 且2R(sin^2A-sin^2c)=(根号3a-b)sinB求角C求三角形ABC面积最
半径为R的圆外接与△ABC,且2R(sin²A-sin²C)=(根号3a-b)sinB,求∠C和△A
半径为R的圆外接与三角形ABC 且2R(sin^2A-sin^2c)=(根号3*a-b)sinB求角C
半径为R的圆外接于三角形ABC,且2R(sin平方A-sin平方C)=(根号三a-b)*sinB,求∠C
在三角形ABC中,sin^A+cos^B-sinAsinB=sin^C且ab=4,求三角形ABC的面积.