求[log(2)9+log(4)9+log(8)27+……+log(2^n)3^n]*log(9)n次根号32(n∈N*
计算(log以2为底的3+log以4为底的9+log以8为底的7+……+log以2^n为底的3^n)*log以9为底^n
(log2 3+log4 9.+log8 27+.+log(2^n底)(3^n))log9 n次根号32
log(n+2)n+1和log(n+1)n (n大于1),比较大小
log(2)(25)*log(3)(根号2)*log(5)(9)
a^[log(a)b×log(b)c×log(c)N]
用换底公式简化[log(4)3+log(8)3][log(3)2+log(9)2]
(log(4)3+log(8)3)(log(3)2+log(9)2) 怎么个思路
(log(4)3+log(8)3)(log(3)2+log(9)8) 怎么个思路
求log(2)(3+n^2)-2=log(2)3解题过程.
设n∈N,n>1.求证:logn (n+1)>log(n+1) (n+2)
log(2)9×log(3)4
log(2)9log(3)4等于