已知三角形ABC为等边三角形,AB=2,设点P,Q满足满足满足向量AP=入向量AB,向量AQ=(1-
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 10:56:41
已知三角形ABC为等边三角形,AB=2,设点P,Q满足满足满足向量AP=入向量AB,向量AQ=(1-
已知三角形ABC为等边三角形,AB=2,设点P,Q满足满足满足向量AP=入向量AB,向量AQ=(1-入)向量AC,λ∈R,若BQ.CP=-3/2,则λ=
已知三角形ABC为等边三角形,AB=2,设点P,Q满足满足满足向量AP=入向量AB,向量AQ=(1-入)向量AC,λ∈R,若BQ.CP=-3/2,则λ=
:∵AP=λ
AB,AQ=(1-λ)
AC,λ∈R
∴BQ=
BA+
AQ=
BA+(1-λ)
AC根据向量加法的三角形法则求出
BQ=
BA+
AQ=
BA+(1-λ)
AC,
CP=
CA+
AP=
CA+λ
AB进而根据数量级的定义求出
BQ•
CP再根据
BQ•
CP=-
32即可求出λ.,CP=
CA+
AP=
CA+λ
AB
∵△ABC为等边三角形,AB=2
∴BQ•
CP=BA•
CA+λBA•
AB+(1-λ)AC•
CA+λ(1-λ)
AC•
AB
=2×2×cos60°+λ×2×2×cos180°+(1-λ)×2×2×cos180°+λ(1-λ)×2×2×cos60°
=-2λ2+2λ-2
∵BQ•
CP=-32
∴4λ2-4λ+1=0
∴(2λ-1)2=0
∴λ=1/2
AB,AQ=(1-λ)
AC,λ∈R
∴BQ=
BA+
AQ=
BA+(1-λ)
AC根据向量加法的三角形法则求出
BQ=
BA+
AQ=
BA+(1-λ)
AC,
CP=
CA+
AP=
CA+λ
AB进而根据数量级的定义求出
BQ•
CP再根据
BQ•
CP=-
32即可求出λ.,CP=
CA+
AP=
CA+λ
AB
∵△ABC为等边三角形,AB=2
∴BQ•
CP=BA•
CA+λBA•
AB+(1-λ)AC•
CA+λ(1-λ)
AC•
AB
=2×2×cos60°+λ×2×2×cos180°+(1-λ)×2×2×cos180°+λ(1-λ)×2×2×cos60°
=-2λ2+2λ-2
∵BQ•
CP=-32
∴4λ2-4λ+1=0
∴(2λ-1)2=0
∴λ=1/2
已知三角形ABC为等边三角形,AB=2,设点P,Q满足向量AP=入向量AB,向量AQ=(1-入)向量AC,入∈R,若向量
在等边△ABC中,AB=2,设点P,Q满足向量AP=λ向量AB,向量AQ=(1-λ)向量AC,λ∈R,向量BQ×向量CP
已知三角形ABC的重心为P,若实数入满足:向量AB+向量AC=入向量AP,则入的值为
填空 等边三角形ABC中P在线段AB上满足向量AP=入向量AB若向量CP乘向量AB=向...
..已知P是三角形ABC内一点,且满足向量AP+2向量BP+3向量CP=0向量,设Q为CP的延长线与AB的交点,令向量C
已知三角形ABC所在的平面上的动点P满足向量AP=|向量AB|向量AC+|向量AC|向量AB,则
设P,Q为ABC三角形内的两点,且向量AP=1/2向量AB+1/4向量AC,向量AQ=1/4向量AB+1/2向量AC,则
设P.Q为三角形ABC内两点..向量AP=2/5向量AB+1/5向量AC 向量AQ=2/3向量AB+1/4向量 AC 则
设P.Q为三角形ABC内两点,且向量AP=2/5AB+1/5AC,向量AQ=2/3AB+1/4AC.
如图,设P,Q为ABC三角形内的两点,且向量AP=2/5向量AB+1/5向量AC,AQ=2/3向量AB+1/4向量AC,
如图,设P,Q为△ABC内的两点,向量AP=2/5向量AB+1/5向量AC,向量AQ=2/3向量AB+1/4向量AC,则
如图,设P,Q为△ABC内的两点,且AP向量=2/3AB向量+1/4AC向量,AQ向量=3/5AB向量+1/3AC向量,