作业帮 > 数学 > 作业

微分方程y"-5y'+4y=xe^2x的特解形式是,最好有过程,书上也没找到关于二阶常系数非齐次方程特解的说明,十

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 21:51:28
微分方程y"-5y'+4y=xe^2x的特解形式是,最好有过程,书上也没找到关于二阶常系数非齐次方程特解的说明,十
微分方程y
设特解y=Axe^(2x)+Be^(2x) 代入微分方程,得-2Axe^(2x)-(A+2B)e^(2x)=xe^(2x)
故有A=-1/2,B=1/4
特解为y=-1/2xe^(2x)+1/4e^(2x)
再问: 谢谢回答,十分详细。答案给的是 特解形式y*= x (AX+B) e^(2x). 其实我就是想问这个公式是怎么来的
再答: 对于二阶常系数非齐次线性方程的非齐次项f(x)于特解y*的关系 对于f(x)=p(x)e^(ax),其中p(x)为x的n 次多项式 若a不是特征根,y*(x)=R(x)e^(ax),其中R(x)为x的n次多项式; 若a是特征方程的单根,y*(x)=xR(x)e^(ax); 若a是特征方程的重根,y*(x)=x^2R(x)e^(ax); 可以参考同济的《高等数学》第6版上册 第七章第8节