作业帮 > 数学 > 作业

设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 00:54:08
设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围
B={0,-4}的时候当x=0是a=1或-1 当x=-4的时候是a=1或7吗 而且此时有两个解Δ>0 解出a>-1 为什么7和1都大于-1 为什么7就不行!
设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值
A={x|x²+4x=0}={-4,0}
B={x|x²+2(a+1)x+a²-1=0}
(1)
若A∩B=B
则B=空集或B={-4}或B={0}或B={-4,0}
①B=空集
Δ=8a+8<0
a<-1
②B={-4}
由韦达定理有(-4)+(-4)=-2(a+1),(-4)*(-4)=a²-1
所以a无解
③B={0}
由韦达定理有0+0=-2(a+1),0*0=a²-1
所以a=-1

B={-4,0}
由韦达定理有(-4)+0=-2(a+1),(-4)*0=a²-1
所以a=1
所以a的取值范围是{a|a≤-1或a=1}
PS:B={0,-4}的时候,你要把0与-4都代入求得公共的a才能满足
这样a=1
因为你求的a=7时只满足了-4可以是集合元素,而0却不是了.
【或者用我的方法,用韦达定理】
如果不懂,请Hi我,祝学习愉快!