有关三角函数的问题,最好化成为同角三角函数解答
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:19:05
有关三角函数的问题,最好化成为同角三角函数解答
函数y=sin(x+π/3)*sin(x/2+π/2)的函数值域,定义域,单调性,奇偶性,最小正周期是什么
函数y=sin(x+π/3)*sin(x/2+π/2)的函数值域,定义域,单调性,奇偶性,最小正周期是什么
y
=sin(x+π/3)sin(x+π/2)=-[sinxcos(π/3)+cosxsin(π/3)]cosx
=-(1/2)sinxcosx-(√3/2)(cosx)^2=-(1/4)sin2x-(√3/4)(1+cos2x)
=-1-(1/4)sin2x-(√3/4)cos2x=-1-(1/2)[sin2xcos(π/3)+cos2xsin(π/3)]
=-1-(1/2)sin(2x+π/3).
于是:
1、函数的值域是[-3/2,-1/2].
2、函数的定义域是R.
3、当2kπ-π/2<2x+π/3<2kπ+π/2时,函数递减,
当2kπ+π/2<2x+π/3<2kπ+3π/2时,函数递增.
由2kπ-π/2<2x+π/3<2kπ+π/2,得:kπ-5π/12<x<kπ-π/12.
由2kπ+π/2<2x+π/3<2kπ+3π/2,得:kπ-π/12<x<kπ+7π/12.
∴函数在区间(kπ-5π/12,kπ-π/12)上递减,在区间(kπ-π/12,kπ+7π/12)递增.
4、函数为非奇非偶函数.
5、函数的最小正周期是π.
=sin(x+π/3)sin(x+π/2)=-[sinxcos(π/3)+cosxsin(π/3)]cosx
=-(1/2)sinxcosx-(√3/2)(cosx)^2=-(1/4)sin2x-(√3/4)(1+cos2x)
=-1-(1/4)sin2x-(√3/4)cos2x=-1-(1/2)[sin2xcos(π/3)+cos2xsin(π/3)]
=-1-(1/2)sin(2x+π/3).
于是:
1、函数的值域是[-3/2,-1/2].
2、函数的定义域是R.
3、当2kπ-π/2<2x+π/3<2kπ+π/2时,函数递减,
当2kπ+π/2<2x+π/3<2kπ+3π/2时,函数递增.
由2kπ-π/2<2x+π/3<2kπ+π/2,得:kπ-5π/12<x<kπ-π/12.
由2kπ+π/2<2x+π/3<2kπ+3π/2,得:kπ-π/12<x<kπ+7π/12.
∴函数在区间(kπ-5π/12,kπ-π/12)上递减,在区间(kπ-π/12,kπ+7π/12)递增.
4、函数为非奇非偶函数.
5、函数的最小正周期是π.