用球面坐标能不能解:计算三重积分I=∫∫∫(D)zdxdydz,其中D是上半球体x^2+y^2+z^2=o?
计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域
计算三重积分∫∫∫zdxdydz,其中Ω由z=x^2+y^2与z=4围成的闭区域.
计算三重积分∫∫∫zdxdydz,其中Ω由z=根号下x^2+y^2与z=4围成的闭区域.
高数三重积分利用球面坐标计算三重积分Ω根号下x^2+y^2+z^2dv其中Ω是由锥面z=根号x^2+y^2 及球面x^2
计算三重积分∫∫∫zdxdydz,其中Ω由z=x^2+y^2,z=0,x^2+y^2=1所围成的区域
计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)
∫∫∫Ω√x^2+y^2+z^2dv,Ω是由球面x^2+y^2+z^2=z所围成的区域?用球面坐标变换求上述三重积分.
高等数学计算三重积分计算三重积分下∫∫∫(D区域)(x^2+y^2)dxdydz,其中区域D由曲面z=[√(x^2+y^
计算三重积分∫∫∫zdxdydz,Ω由x^2+y^2+z^2=4与z=1/3(x^2+y^2)所围的闭区域
计算三重积分∫∫∫zdxdydz,Ω由x^2+y^2+z^2=1与z=根号(x^2+y^2)所围的闭区域
计算三重积分 ∫∫∫Zdv,其中Ω是由上球面Z=根号(4-x^2-y^2 )及拉面x^2+y^2=1.平面Z=0所围成的
三重积分计算:∫∫∫zdxdydz x+y+z=1和x≥0,y≥0,z≥0