已知点M是正方形ABCD的边AB的中点,MN⊥DM,与∠ABC外角的平分线交于点N.1.如图一,求证:MD=MN
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:41:36
已知点M是正方形ABCD的边AB的中点,MN⊥DM,与∠ABC外角的平分线交于点N.1.如图一,求证:MD=MN
2.若M是AB上任意一点,如图二,MD与MN是否相等,说明理由 3.若M是AB延长线上任意一点,如图三,上述结论是否成立,说明理由
2.若M是AB上任意一点,如图二,MD与MN是否相等,说明理由 3.若M是AB延长线上任意一点,如图三,上述结论是否成立,说明理由
(1)在AD上截取AK=AM,则K为AD中点,连接KM,下面证明三角形KMD和BNM是全等的:
角BMN+角AMD=90度,角BMN+角ADM=90度,故角BMN=角ADM;角DKM=180-45=135;
角MBN=180-45=135,故DKM=MBN,且DK=MB,所以KMD和BNM是全等的,故DM=MN.
(2)结论依然成立:同样在AD上截取AK=AM,同样连接KM,同样证明KMD和BNM全等的;
角BMN=角ADM,DK=MB,角DKM=180-45=135,角MBN=180-45=135,故角DKM=角MBN,
所以KMD和BNM是全等的,故DM=MN.
2.证明:
在DA上截取DF=BM,连接FM
∵MN⊥DM,∠A=90°
∴∠BMN+∠AMD=∠MAF+∠AMD=90°
∴∠BMN=∠MAF
∵AB=AD
∴AM=AF
∴∠AFM=45°
∴∠DFM=135°
∵BN平分∠CBE
∴∠MBN=135°
∴∠MBN=∠DFM
∴△DFM≌△MBN(ASA)
∴MD=MN
角BMN+角AMD=90度,角BMN+角ADM=90度,故角BMN=角ADM;角DKM=180-45=135;
角MBN=180-45=135,故DKM=MBN,且DK=MB,所以KMD和BNM是全等的,故DM=MN.
(2)结论依然成立:同样在AD上截取AK=AM,同样连接KM,同样证明KMD和BNM全等的;
角BMN=角ADM,DK=MB,角DKM=180-45=135,角MBN=180-45=135,故角DKM=角MBN,
所以KMD和BNM是全等的,故DM=MN.
2.证明:
在DA上截取DF=BM,连接FM
∵MN⊥DM,∠A=90°
∴∠BMN+∠AMD=∠MAF+∠AMD=90°
∴∠BMN=∠MAF
∵AB=AD
∴AM=AF
∴∠AFM=45°
∴∠DFM=135°
∵BN平分∠CBE
∴∠MBN=135°
∴∠MBN=∠DFM
∴△DFM≌△MBN(ASA)
∴MD=MN
如图.已知M是正方形ABCD的边AB上的中点,MN⊥DM,与∠ABC外角的平分线交于N.求证:MD=MN
如图已知点M是正方形ABCD的边AB延长线上任意一点,MN⊥DM,与∠ABC的外角平分线交与点N,求证MD=MN.
如图,点M为正方形ABCD的边AB上任意一点,MN⊥DM且于∠ABC外角的平分线交于点N,求证:MD=MN
已知:正方形ABCD,M是AB边的中点,E是AB延长线上一点,连接MD,作MN垂直于DM,与角CBE平分线BN交于点N.
急:初二简单数学题正方形ABCD中,M是AB中点连接DM,作DM的垂线,交∠ABC的外角平分线于N. 1.求证DM=MN
如图,已知正方形ABCD中,M是AB中点,E是AB延长线上一点,NM⊥DM,且交∠CBE的平分线于点N.求证:DM=MN
1.在正方形ABCD中,M是AB上任意一点,DM⊥MN,MN交∠ABC的外角∠CBE的平分线于N.
已知正方形ABCD中M为AB的中点,E为AB延长线上的一点,MN垂直于DM交∠CBE的平分线于N,求证:MD=MN
如图,点M为正方形ABCD的边AB延长线上任意一点,MN⊥DM且与角ABC的外角交与点N,此时MD与MN有何数量关系?
如图,在正方形ABCD中,M是AB上任意一点,DM垂直MN,MN交角CBE的平分线于N.求证:MD=MN.
已知正方形ABCD中,M是AB的中点,E是AB延长线上一点MN垂直DM且交角CBE的平分线与N,求证:MD=MN
四边形ABCD中,∠ABC=∠ADC=90,M是AC的中点,MN⊥BD,与MD的平行线交于点N