作业帮 > 数学 > 作业

已知复数z=a+bi(其中i为虚数单位,a.b∈R),若z²的绝对值=4,则a+b的取值范围是多少

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 18:32:08
已知复数z=a+bi(其中i为虚数单位,a.b∈R),若z²的绝对值=4,则a+b的取值范围是多少
已知复数z=a+bi(其中i为虚数单位,a.b∈R),若z²的绝对值=4,则a+b的取值范围是多少
|z^2|=|z|^2=a^2+b^2=4,
因此由 |a+b|^2=a^2+b^2+2ab ≤ a^2+b^2+(a^2+b^2)=8
得 -2√2 ≤ a+b ≤ 2√2 .