y=∫xcos(t²+1)dt
y=xcos(1/x)
d/dx{积分从x^2到0(xcos(t^2)dt)}
y= ∫[0,x](t-1)^3(t-2)dt,dy/dx(x=0)
dx/dt=x+t,dy/dt=-y+t,求x,y(t为常数).
dx/dt=6t+2,dy/dt=(3t+1)sin(t^2),求d^2y/dx^2
y(x)为连续函数,∫(上线x,下线0)[(x+1)t-x]y(t)dt=7x,求y(x)
设f(x)=∫(1,x^2) e^(-t)/t dt,求∫(0,1)xf(x)dt
y=∫(x 1)sin(t∧2)dt,求dy/dx
y=∫(1 -x)sin(t∧2)dt,求dy/dx
y=∫(0.x) 【(3t+1)/(t^2-t+1)】dt在[0,1]上的最大值
求证 cos*xcos*y + sin*xsin*y + sin*xcos*y + xin*ycos*x = 1
函数y=∫(0到2x)t^2dt在x=1处的导数与d/dx∫(0到x^2)√(1+t^2)dt在算法上有何不同,