设f(x)在〔a,b〕上连续且f(x)>0,F(x)=∫f(t)dt(上限x下限a)+∫dt/f(t)(上限x下限b).
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 08:08:52
设f(x)在〔a,b〕上连续且f(x)>0,F(x)=∫f(t)dt(上限x下限a)+∫dt/f(t)(上限x下限b).
证明:1.F(x)导数大于等于2
2.F(x)=0在(a,b)内有且仅有一个根.
证明:1.F(x)导数大于等于2
2.F(x)=0在(a,b)内有且仅有一个根.
(1)F'(x)=f(x)+1/f(x)>=2根号(f(x)*1/f(x))=2
(2)所以F(x)单增.若有根,必只有一个.
而显然F(x)连续.
F(a)= )=∫f(t)dt(上限a下限a)+∫dt/f(t)(上限a下限b)
=0+∫dt/f(t)(上限a下限b)
=-∫dt/f(t)(上限b下限a)0
所以的确有根
证毕
(2)所以F(x)单增.若有根,必只有一个.
而显然F(x)连续.
F(a)= )=∫f(t)dt(上限a下限a)+∫dt/f(t)(上限a下限b)
=0+∫dt/f(t)(上限a下限b)
=-∫dt/f(t)(上限b下限a)0
所以的确有根
证毕
设f(x)在(-∞,+∞)上连续,且F(x)=1/2a ∫f(t)dt,a>0,上限x+a,下限x-a,求a趋于0时,F
若函数f(x)连续,且F(X)的导数等于f(x),求∫f(t+a)dt,其中积分上限是x,积分下限是0,
设函数f(x)可导,且满足f(x)=1+2x+∫(上限x下限0)tf(t)dt-x∫(上限x下限0)f(t)dt,试求函
请问高数题 设f(x)在(-∞,+∞)内连续,F(x)=∫(上限x,下限0) (2t-x)f(t)dt.求证:有相同单调
设函数F(X)具有二阶连续导数,且满足F(X)=[微分(上限X下限0)F(1-t)dt]+1,求F(X)
设函数f(x)可导,且满足f(x)-∫(上限为x,下限为0)f(t)dt=e^x,求f(x) 需要详解,
设f(x)是以T为周期的连续函数,∫(下限a,上限x)f(t)dt以T为周期,求∫(下限0,上限T)f(x)dx=?
设f(x)在区间[a,b]上连续,证明∫上限a,下限b.f(x)dx=∫上限a,下限bf(a+b-x)dx.
设f(x)在0到正无穷上连续,若积分上限f(x),下限0,t^2dt=x^2(x+1),求f(2)
设f(2x+a)=xe^(x/b),求定积分∫(上限a+2b下限y)f(t)dt
126.设F(x)=∫x (积分上限) 0 (积分下限) sint / t dt ,求 F’(0)
f(x)可积,证明变限积分∫f(t)dt连续,上限x,下限a