计算曲面积分∮∮∑xdydz+ydzdx+zdxdy/(x^2+y^2+z^2)^3/2,其中∑是曲面2x^2+2y^2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 23:06:40
计算曲面积分∮∮∑xdydz+ydzdx+zdxdy/(x^2+y^2+z^2)^3/2,其中∑是曲面2x^2+2y^2+z^2=4的外侧
我用高斯公式化成三重积分后被积函数等于0,可是答案是4π,..
我用高斯公式化成三重积分后被积函数等于0,可是答案是4π,..
你忽略掉分母不能为0这个点,可以用x^2+y^2+z^2=1这个球面先挖掉算得0,
然后再加上挖掉的这部分
∮∑xdydz+ydzdx+zdxdy/(x^2+y^2+z^2)^3/2,此时分母可带入x^2+y^2+z^2=1
∮∑xdydz+ydzdx+zdxdy/(x^2+y^2+z^2)^3/2=∮∑xdydz+ydzdx+zdxdy ∑是曲面x^2+y^2+z^2=1的外侧,再用高斯公式就得4π
然后再加上挖掉的这部分
∮∑xdydz+ydzdx+zdxdy/(x^2+y^2+z^2)^3/2,此时分母可带入x^2+y^2+z^2=1
∮∑xdydz+ydzdx+zdxdy/(x^2+y^2+z^2)^3/2=∮∑xdydz+ydzdx+zdxdy ∑是曲面x^2+y^2+z^2=1的外侧,再用高斯公式就得4π
用高斯公式计算曲面积分∫∫(zdxdy+xdydz+ydzdx)/(x^2+y^2+z^2)
利用高斯公式计算曲面积分∑xdydz+ydzdx+zdxdy,其中∑为球面(x-a)^2+(y-b) ^2+(z-c)
利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy ,其中∑为半球面z=√(R^2-x^2-y^2
曲面为锥面z=根号(x^2+y^2)与z=1所围立体的表面外侧,则∫∫xdydz+ydzdx+zdxdy=
计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1
计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧.
利用高斯公式计算曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2
曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-
第二型曲面积分 计算曲面积分∫∫xdxdy+ydxdz+zdxdy,∑是z=(x^2+y^2)^1/2在z=0和z=h之
高数 第二型曲面积分被积函数为xdydz+ydzdx+zdxdy积分曲面为螺旋面 x=u*cosv,y=y*sinv,z
计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)
高斯公式求曲面积分...求∫∫(xdydz+z^2dxdy)/(x^2+y^2+z^2),