作业帮 > 综合 > 作业

(2004•荆州)关于x的方程x2+(2k+1)x+k2-1=0有两个实数根.

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/14 06:33:19
(2004•荆州)关于x的方程x2+(2k+1)x+k2-1=0有两个实数根.
(1)求实数k的取值范围;
(2)是否存在实数k,使方程的两个实数根的平方和与两个实数根的积相等?若存在,求出k的值;若不存在,说明理由.
(2004•荆州)关于x的方程x2+(2k+1)x+k2-1=0有两个实数根.
(1)方程的判别式△=4k+5,依题意,△=4k+5≥0,∴k≥-5/4;
(2)设方程的两个实数根分别为x1、x2
x12+x22=x1•x2
得k=-2时,
△<O,
故不存在实数k,使方程的两个实数根的平方和与两个实数根的积相等.