f(x)在[0,1]上三阶可导,f(0)=f(1)=f'(1)=0,证明在(0,1)内存在一点c,使3f''(c)+cf
f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0,证明在(0,1)内存在一点c,使得f(c)+(1-e^-
不等式证明题设f(x)在区间[0,1]上二阶可微,且f'(0)=f'(1)=0 证明存在c属于(0,1)满足f''(c)
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明存在一点C属于(0,a),使f(c)+cf‘(c)
设函数f(x)在闭区间(1,1)上连续,在开区间(0,1)内可导,且f(x)=0.证明:存在一点c∈(0,1),使得cf
设函数f(x)在[0,1]上有三阶导数,且f(0)=f(1)=0,设F(x)=x^3f(x),证在(0,1)内存在一个a
f(x)在[0,1]上连续,(0.1)内可导,f(0)=3∫(2/3~4)f(x)dx,证明在(0,1)内c存在,f(c
f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)
设f(x)在【0,1】上连续,(0,1)可导.f(0)=0 ,f(1)=1.证明:存在C属于(0,1)使f(c)=1-c
f(x)在[0,3]连续可导 f(0)+f(1)+f(2)=3 f(3)=1 证明至少存在一点§属于(0,3)使f'(§
设函数f(x)在(-∞,+∞)内有定义,f(0)不等于0,f(xy)=f(x)f(y),证明:f(x)=1
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,a=f(3),b=f(2),c=f(
证明 :f(x)在(正无穷,负无穷)有定义,且f'(x)=f(x) ,f(0)=1 ,则f(x)=e^x