如图:在正方形ABCD-A'B'C'D'中,M,N,P分别是BC,CC',CD的中点,求证:A'P垂直于DMN~~~~~
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:31:50
如图:在正方形ABCD-A'B'C'D'中,M,N,P分别是BC,CC',CD的中点,求证:A'P垂直于DMN~~~~~~~~~急
证明:连结PA交DN于E,PD'交DC'于F
在△ADP与△DCN中
∵AD=DC,∠ADP=∠DCN=90°,DP=CN
∴△ADP≌△DCN
∠APD=∠DNC
∠AED=∠APD+∠PDN=∠DNC+∠PDN=90°
∴PA⊥DN
又∵AA'⊥面ADN,DN∈面ADN
∴AA'⊥DN
∵DN⊥AA',DN⊥PA,AA'∩PA于A
∴DN⊥面PAA'
而PA'∈面PAA'
∴DN⊥PA'
在△D'DP与△DCM中
∵D'D=DC,∠D'DP=∠DCM=90°,DP=CM
∴△D'DP≌△DCM
∠D'PD=∠DMC
∠D'FD=∠D'PD+∠PDM=∠DMC+∠PDM=90°
∴PD'⊥DM
又∵A'D'⊥面D'DM,DM∈面D'DM
∴A'D'⊥DM
∵DM⊥A'D',DM⊥PD',A'D'∩PD'于D'
∴DM⊥面PA'D'
而PA'∈面PA'D'
∴DM⊥PA'
∵PA'⊥DN,PA'⊥DM,DN∩DM于D
∴PA'⊥面DMN
在△ADP与△DCN中
∵AD=DC,∠ADP=∠DCN=90°,DP=CN
∴△ADP≌△DCN
∠APD=∠DNC
∠AED=∠APD+∠PDN=∠DNC+∠PDN=90°
∴PA⊥DN
又∵AA'⊥面ADN,DN∈面ADN
∴AA'⊥DN
∵DN⊥AA',DN⊥PA,AA'∩PA于A
∴DN⊥面PAA'
而PA'∈面PAA'
∴DN⊥PA'
在△D'DP与△DCM中
∵D'D=DC,∠D'DP=∠DCM=90°,DP=CM
∴△D'DP≌△DCM
∠D'PD=∠DMC
∠D'FD=∠D'PD+∠PDM=∠DMC+∠PDM=90°
∴PD'⊥DM
又∵A'D'⊥面D'DM,DM∈面D'DM
∴A'D'⊥DM
∵DM⊥A'D',DM⊥PD',A'D'∩PD'于D'
∴DM⊥面PA'D'
而PA'∈面PA'D'
∴DM⊥PA'
∵PA'⊥DN,PA'⊥DM,DN∩DM于D
∴PA'⊥面DMN
在正方体ABCD-A'B'C'D'中,M,N,P分别是BC,CC',CD,的中点,求证:平面AA'P垂直于平面MND
正方体ABCD-A`B`C`D`中,M、N、P分别是棱BC、CC`CD的中点,求证A`C垂直平面MNP
如图,在正方体ABCD-A'B'C'D'中,MNP分别是BC,CC',CD的中点,求证;平面AA'P⊥平面M
如图在四边形ABCD中,P、M、N、Q分别是AC、AB、CD、MN的中点,AD=BC,求证:PQ垂直MN
如图,在四边形ABCD中,AB=CD,M.N.P.Q分别是AD.BC.BD.AC的中点,求证:MN与PQ互相垂直平分
在正方形ABCD-A'B'C'D中,E.F.G分别是AB.BC.AA'的中点.求证:B'D垂直于平面EFG.
在正方体ABCD—A”B”C”D”中,P,Q分别为AA”,CC”的中点,则四边形D”PBQ是 问D”PBQ是不是垂直?是
已知正方体ABCD-A’B’C’D’中,P、Q、R分别为BC、CD、CC’的中点.(1) 判断直线B’D’与平面PQR的
已知,如图,在四边形ABCD中,AB=AD,CB=CD,点M,N.P,Q分别是AB,BC,CD,DA的中点,求证:四边形
在正方体ABCD-A1B1C1D1,M,N,P分别是BC,CC1,CD的中点,求证:AA1P平面垂直MND平面
在正方体ABCD-A'B'C'D'中E、F、G分别是AB、BC、AA'的中点.求证:B'D垂直于平面EFG.
如图,在正方体ABCD-A 1 B 1 C 1 D 1 中,E、F、G分别是CB、CD、CC 1 的中点.