作业帮 > 数学 > 作业

求不定积分∫dx/(a+x)(a-x)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 00:47:17
求不定积分∫dx/(a+x)(a-x)
原式=∫dx/(a+x)(a-x)=1/2a*∫[1/(a+x)+1/(a-x)]dx=1/2a*(ln|a+x|+ln|a-x|)+C=ln|a²-x²|/2a+C中的1/2a*是怎么来的
求不定积分∫dx/(a+x)(a-x)
是简单恒等变换得来的:
1/[(a+x)(a-x)]
=[1/(2a)]·2a/[(a-x)(a+x)]
=[1/(2a)]·[(a-x)+(a+x)]/[(a+x)(a-x)]
=[1/(2a)]·{(a-x)/[(a+x)(a-x)]+(a+x)/[(a+x)(a-x)]}
=[1/(2a)]·[1/(a+x)+1/(a-x)].
积分部分,你应该明白,不重复了.
再问: 那么1/2a*∫dx/(a+x)是怎么得1/2a*(ln|a+x|)的呢?