已知X Y Z分别>0 且XYZ=1 求证1<1/1+X+1/1+Y+1/1+Z
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 07:01:19
已知X Y Z分别>0 且XYZ=1 求证1<1/1+X+1/1+Y+1/1+Z
1/1+X+1/1+Y+1/1+Z
=[(1+Y)(1+Z)+(1+X)(1+Z)+(1+X)(1+Y)]/(1+X)(1+Y)(1+Z)
=(1+Y+Z+YZ+1+X+Z+XZ+1+X+Y+XY)/(1+X+Y+XY)(1+Z)
=(3+2X+2Y+2Z+XY+YZ+XZ)/(1+X+Y+XY+Z+XZ+YZ+XYZ)
=(3+2X+2Y+2Z+XY+YZ+XZ)/(2+X+Y+Z+XZ+YZ+XY)
=(1+X+Y+Z)/(2+X+Y+Z+XZ+YZ+XY)+1
1
=[(1+Y)(1+Z)+(1+X)(1+Z)+(1+X)(1+Y)]/(1+X)(1+Y)(1+Z)
=(1+Y+Z+YZ+1+X+Z+XZ+1+X+Y+XY)/(1+X+Y+XY)(1+Z)
=(3+2X+2Y+2Z+XY+YZ+XZ)/(1+X+Y+XY+Z+XZ+YZ+XYZ)
=(3+2X+2Y+2Z+XY+YZ+XZ)/(2+X+Y+Z+XZ+YZ+XY)
=(1+X+Y+Z)/(2+X+Y+Z+XZ+YZ+XY)+1
1
已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1
已知x^2+y^2+z^2=1,求证x+y+z-2xyz
已知X,Y,Z为3个互不相等的实数,且X+1/Y=Y+1/Z=Z+1/Z求证(xyz)^2=1
已知X,Y,Z为三个互不相等的数,且X+ 1/Y =Y+ 1/Z = Z+ 1/X.求证:(XYZ)^2 = 1
已知x,y,z都是正数,且xyz=1,求证:xy(x+y)+yz(y+z)+zx(z+x)》6
求教初二数学难题已知:(1/x+1/y+1/z)^(1/3)=1/x+1/y+1/z,且xyz>0,求证:1/x+1/y
已知xyz属于R+,x+y+z=1,求证x^3/(y(1-y))+y^3/(z(1-z))+z^3/(x(1-x))大于
已知x,y,z满足xyz=1,求证x^3/(x+y)+y^3/(y+z)+z^3/(z+x)大于等于3
已知正数xyz,满足x+y+z=xyz 已知正数x,y,z满足x+y+z=xyz,且不等式1/x+y+1/y+z+1/z
已知x+y+z=0,xyz=1,求证:x,y,z中必有一个大于2/3.
已知x、y、z、是正实数,且x+y+z=xyz,求1/(x+y)+1/(y+z)+1/(x+z)的最大值.