设a为实数,函数f(x)=x^2+|x-a|+1.x属于R.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 11:39:43
设a为实数,函数f(x)=x^2+|x-a|+1.x属于R.
1>若f(x)是偶函数,试求a的值
2>求证:无论a取任何实数函数f(x)都不可能是奇函数.
1>若f(x)是偶函数,试求a的值
2>求证:无论a取任何实数函数f(x)都不可能是奇函数.
1、
若f(x)是偶函数,则有:f(-x)=f(x)
f(x)=x^2+|x-a|+1.(1)
f(-x)=x^2+|-x-a|+1.(2)
令(1)式=(2)式,得
|x-a|=|x+a|所以,a=0
2、
假设存在一个实数a,使得函数f(x)为奇函数,则有:
f(-x)=-f(x)
f(-x)=x^2+|-x-a|+1.(3)
-f(x)=-(x^2+|x-a|+1).(4)
令(1)式=(2)式,得
x^2+|-x-a|+1=-(x^2+|x-a|+1),整理得:
2x^2+|x+a|+|x-a|+2=0.(5)
因为:x属于R,
所以2x^2>=0,|x+a|>=0,|x-a|>=0,也即:
2x^2+|x+a|+|x-a|>=0,显然(5)式不成立
故:无论a取任何实数函数f(x)都不可能是奇函数
若f(x)是偶函数,则有:f(-x)=f(x)
f(x)=x^2+|x-a|+1.(1)
f(-x)=x^2+|-x-a|+1.(2)
令(1)式=(2)式,得
|x-a|=|x+a|所以,a=0
2、
假设存在一个实数a,使得函数f(x)为奇函数,则有:
f(-x)=-f(x)
f(-x)=x^2+|-x-a|+1.(3)
-f(x)=-(x^2+|x-a|+1).(4)
令(1)式=(2)式,得
x^2+|-x-a|+1=-(x^2+|x-a|+1),整理得:
2x^2+|x+a|+|x-a|+2=0.(5)
因为:x属于R,
所以2x^2>=0,|x+a|>=0,|x-a|>=0,也即:
2x^2+|x+a|+|x-a|>=0,显然(5)式不成立
故:无论a取任何实数函数f(x)都不可能是奇函数
设a为实数,函数f(x)=e^x-2x+2a,x属于R
设a为实数,函数f(x)=x^2+(x-a)的绝对值+1,x属于R
设a 为实数,函数f(x) = x^2 + |x-a| + 1,x属于R.1)讨论函数f(x)的奇偶性; 2)求函数f(
设a为实数,函数f(x)=x^2+|x-a|+1,x∈R
设函数f(x)=x2+︱2x-a︱ (x属于R,a为实数),设a大于2,求函数f(x)的最小值.
设a是实数,f(x)=a-2/2^x+1(x属于r)1` 证明不论a为何实数,f(x)均为增函数
设a是实数,f(x)=a-(2/2^X+1) (x属于R) (1)证明:不论a为何实数,F(x)均为增函数
求教!设a为实数,函数f(x)=x2+|x-a|+1,x属于R (1)讨论f(x)的奇偶性;(2)求f(x)的最小值
设a为实数,函数f(x)=x2+|x-a|+1,x属于R,(1)讨论f(x)的奇偶性;(2)求f(x)的最小植
设a为实数,函数f(x)=x平方=(x-a)的绝对值+1,x属于R
设a为实数,函数f(x)=e^x-2x+2a,x属于R
设a为实数,函数f(x)=x²+(x-a)的绝对值+1,x属于R