作业帮 > 数学 > 作业

长度为1的平面向量OA和OB夹角120,点C在以O为圆心的圆弧AB上变动

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 19:19:38
长度为1的平面向量OA和OB夹角120,点C在以O为圆心的圆弧AB上变动
长度为1的平面向量OA和OB夹角120,点C在以O为圆心的圆弧AB上变动
给定两个长度为1的平面向量OA和OB,它们的夹角120°,点C在以O为圆心的
圆弧AB上变动,若向量OC=x向量OA+y向量OB,求x+y的最大值
由已知,|OA|=|OB|=|OC|=1 ,且 OA*OB=cos120= -1/2 ,
因此由已知得 OC^2=x^2+y^2+2xy*OA*OB ,
即 x^2+y^2-xy=1 ,
所以 (x+y)^2-3xy=1 ,
由于 xy