数列an的前n项和为Sn且an+Sn= -2n-1若数列bn满足b1=1且b(n+1)=bn+nan求bn的通项公式 急
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 10:48:44
数列an的前n项和为Sn且an+Sn= -2n-1若数列bn满足b1=1且b(n+1)=bn+nan求bn的通项公式 急
an+Sn= -2n-1 a1=-3/2 a1+1=-1/2
an-1+sn-1=-2n+1
2an-an-1=-2
2an+2=an-1+1-1
an+1=1/2(an-1+1)-1/2
1/2(an-1+1)=1/4(an-2+1)-1/4
.
1/2^(n-2)(a2+1)=1/2^(n-1)(a1+1)-1/2^(n-1)
an+1=1/2^(n-1)(-1/2)-(1-1/2^(n-1))=-1/2^n-1+2/2^n
an=-2+1/2^n
b(n+1)=bn+nan=bn+n/2^n-2n
bn=b(n-1)+(n-1)/2^(n-1)-2(n-1)
b2=b1+1/2-2
2+...+2(n-1)=2(n-1+1)(n-1)/2=n(n-1)
s=1/2+2/2^2+3/2^3+..+(n-1)/2^(n-1)
s/2=1/2^2+2/2^2+3/2^3+...+(n-2)/2^(n-1)+(n-1)/2^n
s/2=1/2+1/2^2+1/2^3+...+1/2^(n-1)-(n-1)/2^n=1-1/2^(n-1))-(n-1)/2^n=1-(n+1)/2^n
s=2-(n+1)/2^(n-1)
bn=b1-n(n-1)+2-(n+1)/2^(n-1)=3-n(n-1)-(n+1)/2^(n-1)
an-1+sn-1=-2n+1
2an-an-1=-2
2an+2=an-1+1-1
an+1=1/2(an-1+1)-1/2
1/2(an-1+1)=1/4(an-2+1)-1/4
.
1/2^(n-2)(a2+1)=1/2^(n-1)(a1+1)-1/2^(n-1)
an+1=1/2^(n-1)(-1/2)-(1-1/2^(n-1))=-1/2^n-1+2/2^n
an=-2+1/2^n
b(n+1)=bn+nan=bn+n/2^n-2n
bn=b(n-1)+(n-1)/2^(n-1)-2(n-1)
b2=b1+1/2-2
2+...+2(n-1)=2(n-1+1)(n-1)/2=n(n-1)
s=1/2+2/2^2+3/2^3+..+(n-1)/2^(n-1)
s/2=1/2^2+2/2^2+3/2^3+...+(n-2)/2^(n-1)+(n-1)/2^n
s/2=1/2+1/2^2+1/2^3+...+1/2^(n-1)-(n-1)/2^n=1-1/2^(n-1))-(n-1)/2^n=1-(n+1)/2^n
s=2-(n+1)/2^(n-1)
bn=b1-n(n-1)+2-(n+1)/2^(n-1)=3-n(n-1)-(n+1)/2^(n-1)
设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通
已知数列{an}的通项公式为an=2^(2n-1)且bn=nan、求数列{bn}的前n项和Sn
设数列{an}的前n项和为Sn,数列{bn}满足:bn=nan,且数列{bn}的前n项和为(n-1)Sn+2n
数列an的前n项和Sn满足Sn=n^2-8n+1,若bn=|an|,求数列{bn}的通项公式
数列an前n项和为sn,a1=1,数列bn首项b1=2,且sn+n^2=n(an+1),bn=abn-1求an,bn的通
3.设数列{an}的前n项和Sn=2an-4(n∈N+),数列{bn}满足:bn+1=an+2bn,且b1=2.求{bn
数列an的前n项和为Sn,Sn=2an-1,数列bn满足b1=2,bn+1=an+bn.求数列bn的前n项和Tn
若数列{an]满足前n项和Sn=2an-4,bn+1=an+2bn,且b1=2,求:bn;{bn}的前n项和Tn
数列{bn}的前n项和为Sn,且Sn,且Sn=1-1/2bn(n∈N+) 求{bn}的通项公式
已知数列{an},Sn为其前n项和,满足4an-2Sn=1.(1)求数列{an}的通项公式(2)若bn=nan,求{bn
已知数列an的前n项和为Sn,且Sn=n(n+1)(n属于N*)求数列an的通项公式;(2)若数列bn满足:
数列an的前n项和为Sn,Sn=4an-3,①证明an是等比数列②数列bn满足b1=2,bn+1=an+bn.求数列bn