作业帮 > 数学 > 作业

已知3sinB=sin(2A+B),求证:tan(A+B)=2tan A.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 20:53:53
已知3sinB=sin(2A+B),求证:tan(A+B)=2tan A.
已知3sinB=sin(2A+B),求证:tan(A+B)=2tan A.
3sinB=sin(2A+B)
3sinB=sinAcos(A+B)+cosAsin(A+B)
3sinB=sinA(cosAcosB-sinAsinB)+cosA(sinAcosB+cosAsinB)
3sinB=sinAcosAcosB-sinAsinAsinB+cosAsinAcosB+cosAcosAsinB
3sinB=2cosAsinAcosB+sinB(cosAcosA-sinAsinA)
3(sinAsinA+cosAcosA)sinB=2cosAsinAcosB+sinB(cosAcosA-sinAsinA)
4sinAsinAsinB+2cosAcosAsinB=2cosAsinAcosB
2sinAsinAsinB+cosAcosAsinB=cosAsinAcosB
2sinAsinAsinB+cosAcosAsinB=2cosAsinAcosB-cosAsinAcosB
2sinAcosAcosB-2sinAsinAsinB=cosAsinAcosB+cosAcosAsinB
2sinA(cosAcosB-sinAsinB)=cosA(sinAcosB+cosAsinB)
2sinAcos(A+B)=cosAsin(A+B)
tan(A+B)=2tan A