如图,初二平方根与立方根,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:00:23
如图,初二平方根与立方根,
令:9x^3=10y^3=11z^3=k^3
则:9^(1/3)=k/x
10^(1/3)=k/y,11^(1/3)=k/z
9x^2+10y^2+11z^2=k^3(1/x+1/y+1/z)
故:9^(1/3)+10^(1/3)+11^(1/3)
=k(1/x+1/y+1/z)=k(1/x+1/y+1/z)^(1/3)
即:(1/x+1/y+1/z)^3=1/x+1/y+1/z
xyz>0,且:9x^3=10y^3=11z^3
说明:x>0,y>0,z>0
故:1/x+1/y+1/z>0
故:1/x+1/y+1/z=1
则:9^(1/3)=k/x
10^(1/3)=k/y,11^(1/3)=k/z
9x^2+10y^2+11z^2=k^3(1/x+1/y+1/z)
故:9^(1/3)+10^(1/3)+11^(1/3)
=k(1/x+1/y+1/z)=k(1/x+1/y+1/z)^(1/3)
即:(1/x+1/y+1/z)^3=1/x+1/y+1/z
xyz>0,且:9x^3=10y^3=11z^3
说明:x>0,y>0,z>0
故:1/x+1/y+1/z>0
故:1/x+1/y+1/z=1