作业帮 > 数学 > 作业

已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 14:19:12
已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.
已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.
Sn=1+3/2+5/4+7/8+,+(2n-3)/(2^(n-2)) +(2n-1)/(2^(n-1))
1/2Sn=1/2+3/4+5/8+7/16+,+(2n-3)/(2^(n-1)) +(2n-1)/(2^n)
Sn-1/2Sn=1+(3-1)/2+(5-3)/2^2+(7-5)/2^3+,+[(2n-1)-(2n-3)]/(2^(n-1))-(2n-1)/(2^n)
1/2Sn=1+2/2+2/2^2+2/2^3+,+2/(2^(n-1))-(2n-1)/(2^n)
=1+2*[1/2+1/2^2+1/2^3+,+1/(2^(n-1)]-(2n-1)/(2^n)
=1+2*[1-1/2^(n-1)]-(2n-1)/(2^n)
Sn=2+4*[1-1/2^(n-1)]-(2n-1)/[2^(n-1)]
注:按照通项计算题中第四项应为7/8