已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 14:19:12
已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.
Sn=1+3/2+5/4+7/8+,+(2n-3)/(2^(n-2)) +(2n-1)/(2^(n-1))
1/2Sn=1/2+3/4+5/8+7/16+,+(2n-3)/(2^(n-1)) +(2n-1)/(2^n)
Sn-1/2Sn=1+(3-1)/2+(5-3)/2^2+(7-5)/2^3+,+[(2n-1)-(2n-3)]/(2^(n-1))-(2n-1)/(2^n)
1/2Sn=1+2/2+2/2^2+2/2^3+,+2/(2^(n-1))-(2n-1)/(2^n)
=1+2*[1/2+1/2^2+1/2^3+,+1/(2^(n-1)]-(2n-1)/(2^n)
=1+2*[1-1/2^(n-1)]-(2n-1)/(2^n)
Sn=2+4*[1-1/2^(n-1)]-(2n-1)/[2^(n-1)]
注:按照通项计算题中第四项应为7/8
1/2Sn=1/2+3/4+5/8+7/16+,+(2n-3)/(2^(n-1)) +(2n-1)/(2^n)
Sn-1/2Sn=1+(3-1)/2+(5-3)/2^2+(7-5)/2^3+,+[(2n-1)-(2n-3)]/(2^(n-1))-(2n-1)/(2^n)
1/2Sn=1+2/2+2/2^2+2/2^3+,+2/(2^(n-1))-(2n-1)/(2^n)
=1+2*[1/2+1/2^2+1/2^3+,+1/(2^(n-1)]-(2n-1)/(2^n)
=1+2*[1-1/2^(n-1)]-(2n-1)/(2^n)
Sn=2+4*[1-1/2^(n-1)]-(2n-1)/[2^(n-1)]
注:按照通项计算题中第四项应为7/8
错位相减法求和:求和:Sn=1+3x+5x2+7x3+…+(2n-1)xn-1.
错位相减法数列求和Sn=x+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)
错位相减法的题如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1
已知an=﹙2n-1)·3的n-1次方 求和 错位相减法
用错位相减法求和,Sn=2*1/3+3*1/3²+4*1/3³...+(n-1)*1/3^n
求和1+2*3+3*7+...+n*(2^n-1) 用错位相减法.
求神级人物指教~错位相减法求Sn~已知an= (n+1)/2^(n+1)
错位相减法的问题,例如,求和Sn=x+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,S
如何用错位相减法算求数列1乘2,3乘2^2,5乘2^3,...,(2n-1)乘2^n的前n项和Sn
数列求和 用错位相减法求和 1/a+2/a^2+3/a^3+…+n/a^n (a不等于0)
高中数学, 求和:1×2+2×2^2+3×2^3+……+n·2^n=? 用错位相减法.帮帮忙呗~
错位相减法,数列求和an=n+1,bn=an/2^n-1,求数列bn的前n项和Tn.一轮复习,