作业帮 > 数学 > 作业

n趋向正无穷,求2^n(sin1/3n)的极限

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 11:08:29
n趋向正无穷,求2^n(sin1/3n)的极限
能答的都是我学长。选项分别是0,2/3,1,3/2.
n趋向正无穷,求2^n(sin1/3n)的极限
当n->+∞时,
lim2^[sin(1/3n)]
=lim2^[sin(1/3n) / (1/n)]
=lim2^[(1/3) * sin(1/3n) / (1/3n)]
=2^lim[(1/3) * sin(1/3n) / (1/3n)]…………①
由于当n->+∞时,lim[sin(1/n) / (1/n)]=1
因此,①式=2^(1/3)
再问: 哥,你理解错题了。是lim2^n*sin1/3n,n趋向正无穷。2的N次方乘以sin1/3n。
再答: 哦哦。不好意思,题目理解有误。 你是求这个? 当n->+∞时,lim(2^n)* sin(1/3n)=?
再问: 嗯嗯。。。继续。sin1/n这类我都不会。sin1/3n更不会
再答: 当n->+∞时, lim(2^n)* sin(1/3n) =lim(2^n)/(3n) * [sin(1/3n) / (1/3n)]…………① 当n->∞时,lim [sin(1/3n) / (1/3n)] = 1 因此, ①式= lim(2^n)/(3n) = lim { (1/3n) / [2^(1/n)] } = 0