如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD. (1)判断△ABC的形状,并说明理由; (2)保持图1中
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:59:26
如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD. (1)判断△ABC的形状,并说明理由; (2)保持图1中△
(1)△ABC是等腰直角三角形.理由如下:
在△ADC与△BEC中,AD=BE,∠D=∠E=90°,DC=EC,
∴△ADC≌△BEC,
∴AC=BC,∠DCA=∠ECB.
∵AB=2AD=DE,DC=CE,
∴AD=DC,
∴∠DCA=45°,
(2)DE=AD+BE.理由如下:
在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE,
∴AD=CE,DC=EB.
∴DC-CE=BE-AD,
即DE=AD+BE.
(3)DE=BE+AD.理由如下:
在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE,
∴AD=CE,DC=EB.
∴DC+CE=BE+AD,
即DE=BE-AD.
∴∠ECB=45°,
∴∠ACB=180°-∠DCA-∠ECB=90°.
∴△ABC是等腰直角三角形.
在△ADC与△BEC中,AD=BE,∠D=∠E=90°,DC=EC,
∴△ADC≌△BEC,
∴AC=BC,∠DCA=∠ECB.
∵AB=2AD=DE,DC=CE,
∴AD=DC,
∴∠DCA=45°,
(2)DE=AD+BE.理由如下:
在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE,
∴AD=CE,DC=EB.
∴DC-CE=BE-AD,
即DE=AD+BE.
(3)DE=BE+AD.理由如下:
在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE,
∴AD=CE,DC=EB.
∴DC+CE=BE+AD,
即DE=BE-AD.
∴∠ECB=45°,
∴∠ACB=180°-∠DCA-∠ECB=90°.
∴△ABC是等腰直角三角形.
如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.
已知矩形abcd 点c是边de的中点且AB=2AD,(1)判断三角形ABC的形状(等腰直角三角形)(2)保持图19.2.
如图,已知:△ABC中,∠C=90°,AC=BC,M是AB的中点,DE⊥AC于F.试判断△MEF的形状?并说明理由.
如图,△ABC是等腰三角形,AD是高,且AB恰好是DE的垂直平分线.判断△ADE的形状,并说明理由
如图,在正方形ABCD中,E是AB的中点,F为AD上一点,且AF=1/4AD,试判断△FEC的形状,并说明理由.
如图,在正方形ABCD中,E是边AD的中点,点F在边DC上,且DF=1/4DC.试判断△BEF的形状,并说明理由.
如图,在正方形ABCD中,E为AB的中点,F为AD上1点,且AF=1/4AD,式判断三角形CEF的形状,并说明你的理由
如图 正方形abcd中E是AD的中点,点F在边DC上,且DF=1/4DC.试判断三角形BEF的形状,并说明理由.
如图,已知AB=CD,AD=CB,点E,F分别是AB,CD的中点,请填空说明下列判断成立的理由:(1)∠A=∠C;(2)
如图,等腰梯形ABCD中,AD//BC,点E是AD延长线上一点,DE=BC,判断△ACE的形状并说明理由
如图,在RT△ABC中,∠C=90°,过点B作BD平行AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.
如图,已知AB=CD,AD=CB,点E,F分别是AB,CD的中点,请填空说明下列判断成立的理由:(1)