(2010•河东区一模)已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn-1+a3bn-2+…+an
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/16 00:59:23
(2010•河东区一模)已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.
(1)若数列{an}是首项和公差都是1的等差数列,求证:数列{bn}是等比数列;
(2)若数列{bn}是等比数列,数列{an}是否是等差数列,若是请求出通项公式,若不是请说明理由;
(1)若数列{an}是首项和公差都是1的等差数列,求证:数列{bn}是等比数列;
(2)若数列{bn}是等比数列,数列{an}是否是等差数列,若是请求出通项公式,若不是请说明理由;
(1)依题意数列{an}的通项公式是an=n,
故等式即为bn+2bn-1+3bn-2++(n-1)b2+nb1=2n+1-n-2,bn-1+2bn-2+3bn-3++(n-2)b2+(n-1)b1=2n-n-1(n≥2),
两式相减可得bn+bn-1++b2+b1=2n-
得bn=2n-1,数列{bn}是首项为1,公比为2的等比数列.
(2)设等比数列{bn}的首项为b,公比为q,则bn=bqn-1,从而有:bqn-1a1+bqn-2a2+bqn-3a3++bqan-1+ban=2n+1-n-2,
又bqn-2a1+bqn-3a2+bqn-4a3++ban-1=2n-n-1(n≥2),
故(2n-n-1)q+ban=2n+1-n-2
an=
2−q
b×2n+
q−1
b×n+
q−2
b,
要使an+1-an是与n无关的常数,必需q=2,
即①当等比数列{bn}的公比q=2时,数列{an}是等差数列,其通项公式是an=
n
b;
②当等比数列{bn}的公比不是2时,数列{an}不是等差数列.
故等式即为bn+2bn-1+3bn-2++(n-1)b2+nb1=2n+1-n-2,bn-1+2bn-2+3bn-3++(n-2)b2+(n-1)b1=2n-n-1(n≥2),
两式相减可得bn+bn-1++b2+b1=2n-
得bn=2n-1,数列{bn}是首项为1,公比为2的等比数列.
(2)设等比数列{bn}的首项为b,公比为q,则bn=bqn-1,从而有:bqn-1a1+bqn-2a2+bqn-3a3++bqan-1+ban=2n+1-n-2,
又bqn-2a1+bqn-3a2+bqn-4a3++ban-1=2n-n-1(n≥2),
故(2n-n-1)q+ban=2n+1-n-2
an=
2−q
b×2n+
q−1
b×n+
q−2
b,
要使an+1-an是与n无关的常数,必需q=2,
即①当等比数列{bn}的公比q=2时,数列{an}是等差数列,其通项公式是an=
n
b;
②当等比数列{bn}的公比不是2时,数列{an}不是等差数列.
已知数列{an}{bn},对任意正整数N,都有:a1bn+a2bn-1+a3bn-2+……+an-1b2+anb1=2^
已知数列an,bn,对一切正整数n都有:a1bn+a2bn-1+a3bn-2+..anb1=3^n+1-2n-3 (1)
数列{an},{bn}对于任何正整数n都有
已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列
已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+
已知数列{an}中,a1=3,an+1-2an=0,数列{bn}中,bn*an=(-1)^n (n是正整数) (1)求数
已知数列{an}和{bn},对一切正整数n都有:
已知数列an的前n项和为sn,且对任意正整数n都有an是n与sn的等差中项(1)bn=an+1,求bn
{a} 、{b} 都是各项为正的数列,对任意的正整数n,都有an,bn^2,an+1 成等差数列,bn^2,an+1,b
已知正项数列{an},{bn}满足:a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,根号an,bn+
已知【an】是递增数列,且对任意n是正整数,都有an=n^2+bn恒成立,则实数b的取值范围是
(2014•呼和浩特一模)数列{an},已知对任意正整数n,a1+a2+a3+…+an=2n-1,则a12+a22+a3