常微分方程求解,重赏![2xy+(x^2)y+(y立方)/3]dx +(x^2 +y^2)dy = 0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:37:51
常微分方程求解,重赏![2xy+(x^2)y+(y立方)/3]dx +(x^2 +y^2)dy = 0
[2xy+(x^2)y+(y立方)/3]dx +(x^2 +y^2)dy = 0
[2xy+(x^2)y+(y立方)/3]dx +(x^2 +y^2)dy = 0
∵(2xy+x²y+y³/3)dx+(x²+y²)dy=0
==>e^x*(2xy+x²y+y³/3)dx+e^x*(x²+y²)dy=0
==>2xye^xdx+x²ye^xdx+y³e^x/3dx+x²e^xdy+y²e^xdy=0
==>ye^xd(x²)+x²yd(e^x)+y³/3d(e^x)+x²e^xdy+e^xd(y³/3)=0
==>yd(x²e^x)+x²e^xdy+d(y³e^x/3)=0
==>d(x²ye^x)+d(y³e^x/3)=0
∴x²ye^x+y³e^x/3=C (C是积分常数)
故原微分方程的通解是x²ye^x+y³e^x/3=C (C是积分常数).
==>e^x*(2xy+x²y+y³/3)dx+e^x*(x²+y²)dy=0
==>2xye^xdx+x²ye^xdx+y³e^x/3dx+x²e^xdy+y²e^xdy=0
==>ye^xd(x²)+x²yd(e^x)+y³/3d(e^x)+x²e^xdy+e^xd(y³/3)=0
==>yd(x²e^x)+x²e^xdy+d(y³e^x/3)=0
==>d(x²ye^x)+d(y³e^x/3)=0
∴x²ye^x+y³e^x/3=C (C是积分常数)
故原微分方程的通解是x²ye^x+y³e^x/3=C (C是积分常数).
微分方程求解 (x^2y^3+xy)dy=dx
求解微分方程 x^2*dy/dx=xy-y^2
求解一个微分方程:(2x·y^2-y)dx+(y^2+xy)dy = 0
常微分方程 解dy/dx + y - x^2=0
解微分方程 (x^2y^3+xy)dy=dx
求解微分方程csc(x^2+y^3)dx+2x^2dx+3xy^2dy=0
求解微分方程(xy^2+x)dx+(y-x^2y)dy=0,y(2)=1的通解
求解一道微分方程题x*y^3*dy+(y^4-x^2)*dx=0
解常微分方程dy/dx=(x+y)^2
求解微分方程dy/dx+x/2y=1/2
求解微分方程dy/dx=(a/(x+y))^2
求解微分方程.dx/dy=x/[2(lnx-y)]