作业帮 > 数学 > 作业

常微分方程求解,重赏![2xy+(x^2)y+(y立方)/3]dx +(x^2 +y^2)dy = 0

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:37:51
常微分方程求解,重赏![2xy+(x^2)y+(y立方)/3]dx +(x^2 +y^2)dy = 0
[2xy+(x^2)y+(y立方)/3]dx +(x^2 +y^2)dy = 0
常微分方程求解,重赏![2xy+(x^2)y+(y立方)/3]dx +(x^2 +y^2)dy = 0
∵(2xy+x²y+y³/3)dx+(x²+y²)dy=0
==>e^x*(2xy+x²y+y³/3)dx+e^x*(x²+y²)dy=0
==>2xye^xdx+x²ye^xdx+y³e^x/3dx+x²e^xdy+y²e^xdy=0
==>ye^xd(x²)+x²yd(e^x)+y³/3d(e^x)+x²e^xdy+e^xd(y³/3)=0
==>yd(x²e^x)+x²e^xdy+d(y³e^x/3)=0
==>d(x²ye^x)+d(y³e^x/3)=0
∴x²ye^x+y³e^x/3=C (C是积分常数)
故原微分方程的通解是x²ye^x+y³e^x/3=C (C是积分常数).