已知:二次函数y=x2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-3,0)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 12:45:51
已知:二次函数y=x2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-3,0)
已知:二次函数y=x2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-3,0),与y轴交于点c,点D(-2,-3)在抛物线上。
1、点G抛物线上的动点,在X轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由。
已知:二次函数y=x2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-3,0),与y轴交于点c,点D(-2,-3)在抛物线上。
1、点G抛物线上的动点,在X轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由。
1. 将A(-3,0)和D(-2,-3)代入函数方程
0=9-3b+c 3b-c=9 (1)
-3=4-2b+c 2b-c=7 (2)
(1)-(2) b=2
代入(2) c=-3
所以解析式为y=x²+2x-3
2. 对称轴x=-1
则IPAI+IPDI的最小值是A(-3, 0)关于x=-1的对称点B(1,0)与D点的连线
A'D与对称轴的交点即为P点
所以最小值=√[(1+2)²+(0+3)²]=3√2
3. 如果存在E,设E(t,0)
则BDIIEG
斜率相等, 即k=(0+3)/(1+2)=1
所以EG的方程为y=x-t
则可设G(m, m-t)
EG²=(m-t)²+(m-t)²=2(m-t)²
BD²=(0+3)²+(1+2)²=18
因EG=BD 所以(m-t)²=9
从图可知,G在第一象限,所以m>0
所以m-t=3 (1)
又G在抛物线上,所以m-t=m²+2m-3
(1)代入得 m²+2m-6=0
m=-1-√7(舍去)或m=-1+√7
代入(1) t=-4+√7
所以E(-4+√7, 0)
0=9-3b+c 3b-c=9 (1)
-3=4-2b+c 2b-c=7 (2)
(1)-(2) b=2
代入(2) c=-3
所以解析式为y=x²+2x-3
2. 对称轴x=-1
则IPAI+IPDI的最小值是A(-3, 0)关于x=-1的对称点B(1,0)与D点的连线
A'D与对称轴的交点即为P点
所以最小值=√[(1+2)²+(0+3)²]=3√2
3. 如果存在E,设E(t,0)
则BDIIEG
斜率相等, 即k=(0+3)/(1+2)=1
所以EG的方程为y=x-t
则可设G(m, m-t)
EG²=(m-t)²+(m-t)²=2(m-t)²
BD²=(0+3)²+(1+2)²=18
因EG=BD 所以(m-t)²=9
从图可知,G在第一象限,所以m>0
所以m-t=3 (1)
又G在抛物线上,所以m-t=m²+2m-3
(1)代入得 m²+2m-6=0
m=-1-√7(舍去)或m=-1+√7
代入(1) t=-4+√7
所以E(-4+√7, 0)
已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的
在平面直角坐标系中二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0)
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0)
如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4
如图 二次函数Y=ax²+bx+c的图象与X轴交于A.B两点 其中A点的坐标为(-1,0)点C(0,5),D(
已知二次函数Y=ax^2+bx+c(a不等于0)的图像与x轴交与A,B两点与y轴交于点c,其中A的坐标为(-2,0),
如图,已知二次函数y=(x-1)2的图象的顶点为C点,图象与直线y=x+m的图象交于A、B两点,其中A点的坐标为(3,4
如图,已知二次函数y=x2+bx+c 的图象与x轴交于A、B两点,与y轴交于点P,顶点为C(-1,2 ).(1)求此函数
已知:如图,二次函数y=ax²+bx+c的图像与x轴交于a,b两点,其中a点坐标为
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3
已知二次函数y=x2+bx+c的图象过点M(0,-3),并与x轴交于点A(x1,0)、B(x2,0)两点,且x12+x2
如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(2,-9).