一道高中立体几何题已知四棱锥S-ABCD,SA⊥底面ABCD,且ABCD为矩形,AE⊥SB,EF⊥SC求证AF⊥SC
四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面AC,SC⊥截面AEFG,求证:(1)AE⊥SB AG⊥SD;(2
如下图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,E,F分别是SD,SC的中点.求证:(1)BC⊥平面SAB
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=SB,点E为AB的中点,点F为SC的中点
在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点,求证
立体几何 二面角已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点.当SA/AB的值
已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点
在四棱锥S-ABCD中底面ABCD为正方形,侧棱SD⊥底面ABCD,E.F分别为AB,SC中点,证明:EF‖平面SAD
如图所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.求证:AE⊥S
如图在四棱锥S——ABCD中,底面四边形ABCD是平行四边形,SC⊥平面ABCD,E为SA的中点,求证平面EBD⊥平面A
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交S
已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB交SB于E,过E作EF⊥SC交SC于F.
如图,四棱锥S-ABCD中,底面ABCD为菱形,侧面SBC⊥底面ABCD,已知角ABC=60度,AB=SB=SC=2 (