设y=ln(x+根号(x^2+4),求d^2y/dx^2
一道高数题,设y=ln【f(x)】,其中f’’(x)存在,求(d^2y)/(dx^2) ,
设x+y^2+z=ln(x+y^2+z)^1/2,求dz/dx
设参数函数x=ln(1+t^2),y=t-arctant.求(d^2y)/(dx^2).
已知=ln[x+根号(x^2+1)],求二阶导数d^2y/dx^2
设 x/y=ln(y/x) ,求 dy/dx
设{x=ln√(1+t^2),y=arctant,求 dy/dx及d^2·y/d·x^2
求微分 方程y-2x=(x-y)ln(x-y) 求dy/ dx 和d^2y/ dx^2
设ln(x^2+y^2)=arctan(y/x),则dy/dx=
y=ln√1-2x,求dy/dx!
设y=ln(x²+2) ,求y' .
设y=ln(x+根号下(x^2+a^2)),求dy.
求隐函数y的二阶导数d^2y/dx^2 siny=ln(x+y)