(2012•山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 08:21:40
(2012•山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.
(Ⅰ)求证:BE=DE;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
(Ⅰ)求证:BE=DE;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
(1)证明:∵四棱锥E-ABCD,底面△ABD为正三角形,CB=CD,
△BCD为等腰三角形
取BD中点O,连接AC,O在AC上
∵EC⊥BD
∴EO⊥底面于O,AC⊥BD
∴△BED为等腰三角形
∴EB=ED
(2)证明:∵∠BCD=120°,M为线段AE的中点
过D作DF⊥AB于F,F为AB中点
连接DM,MF
由(1)可知∠DBC+∠DBA=90°
∴BC⊥AB==>BC//DF
∴MF//BE
∴面DMF//面BCE
∵DM∈面DMF
∴DM//平面BEC
△BCD为等腰三角形
取BD中点O,连接AC,O在AC上
∵EC⊥BD
∴EO⊥底面于O,AC⊥BD
∴△BED为等腰三角形
∴EB=ED
(2)证明:∵∠BCD=120°,M为线段AE的中点
过D作DF⊥AB于F,F为AB中点
连接DM,MF
由(1)可知∠DBC+∠DBA=90°
∴BC⊥AB==>BC//DF
∴MF//BE
∴面DMF//面BCE
∵DM∈面DMF
∴DM//平面BEC
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB//CD,AC⊥BD,垂足为H,PH是四棱锥的高.
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB‖CD,AC⊥BD垂足为H,PH是四棱锥的高,E为AD中点.
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
如图,在四面体ABCD中,CB=CD=BD,AD⊥BD,点E,F分别是AB,BD的中点.
如图,四棱锥P-ABCD的底面是平行四边形,E、F分别为AB,CD的中点.
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高. (只看第二问!
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.
(2014•潍坊三模)如图,四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M是AC的中点
在四棱锥P-ABCD中,△PBC为正三角形,AB⊥平面PBC,AB∥CD,AB=12DC,DC=3BC,E为PD中点.
2.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E、F分别为CD、PB的中点.
如图,在四棱锥V—ABCD中,底面ABCD是正方形,侧面VAD是正三角形,且E、F、G分别为DB、AD中点,补充如下