具有特解y=y1=e^(-x),y2=xe^(-x),y3=e^x的三阶常系数齐次微分方程为
求具有特解y1=e^-x,y2=2xe^-x,y3=3e^x 的3阶常系数齐次线性微分方程是什么?
下午考试,微分方程已知二阶常系数齐次线性微分方程两个特解为y1=1 y2=e^(-2x),则该微分方程为?
微分方程通解和特解,已知y1=x,y2=x^2,y3=e^x为方程y''+p(x)y'+q(x)y=f(x)的三个特解,
已知二介线性齐次微分方程的三个特解为y1=1.y2=x,y3=x³,求通解
已知二阶常系数齐次线性微分方程的两个特解,试写出相应的微分方程 (1) y1=1 ,y2=е^-x
高数微分方程问题:设y1,y2,y3是微分方程y''+p(x)y'+q(x)y=f(x)的三个不同的解,且(y1-y2)
1.已知y1=3,y2=3+x²,y3=3+x²+e^x都是微分方程y"+p(x)y'+q(x)y=
已知y1=xe^x,y2=xe^2x,y3=e^2x,y4=x是二阶线性微分函数y''+p(x)y'+q(x)y=f(x
已知二阶非齐次线性微分方程的三个特解为y1=1,y2=x,y3=x^2,写出该方程的通解.
已知函数e^2x+(x+1)e^x是二阶常系数线性非齐次微分方程y''+ay'+by=ce^x的一个特解,则该微分方程的
设函数y1(x),y2(x),y3(x)都是线性方程y''+P(x)y'+Q(x)y=f(x)的特解,其中P,Q,f都是
求微分方程y''-3y'+2y=xe^2x(e的2x次幂)的通解,