2条2重积分的题求高手解答,写一下思路,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:29:14
2条2重积分的题求高手解答,写一下思路,
1.若∫∫(x^2+y^2)^1/2dxdy=4/9,其中a>0,则a=___
2.设D:x^2+y^20且∫∫D(R^2-X^2-Y^2)^1/2dxdy=2/3π,则R=
1.若∫∫(x^2+y^2)^1/2dxdy=4/9,其中a>0,则a=___
2.设D:x^2+y^20且∫∫D(R^2-X^2-Y^2)^1/2dxdy=2/3π,则R=
1.a是什么?
2.化成极坐标x=rcosθ,y=rsinθ,D:0
再问: 1.若∫∫(x^2+y^20,则a=___
再答: x²+y²≤ax => x²+y²-ax≤0 =>(x-a/2)²+y²≤(a/2)² 积分域为以(a/2,0)为圆心, a/2为半径的圆 化成极坐标x=rcosθ, y=rsinθ, D: 0≤r≤acosθ, -π/2≤θ≤π/2 ∫∫(x²+y²≤ax) √(x²+y²)dxdy=∫∫D r² drdθ =∫(-π/2,π/2)dθ∫(0,acosθ)r²dr =∫(-π/2,π/2) (a³cos³θ)/3 dθ =(a³/3)∫(-π/2,π/2) cos²θ d(sinθ) =(a³/3) (sinθ-sin³θ/3) | (-π/2,π/2) =(a³/3) (4/3) =4a³/9=4/9 ∴a³=1 a=1
2.化成极坐标x=rcosθ,y=rsinθ,D:0
再问: 1.若∫∫(x^2+y^20,则a=___
再答: x²+y²≤ax => x²+y²-ax≤0 =>(x-a/2)²+y²≤(a/2)² 积分域为以(a/2,0)为圆心, a/2为半径的圆 化成极坐标x=rcosθ, y=rsinθ, D: 0≤r≤acosθ, -π/2≤θ≤π/2 ∫∫(x²+y²≤ax) √(x²+y²)dxdy=∫∫D r² drdθ =∫(-π/2,π/2)dθ∫(0,acosθ)r²dr =∫(-π/2,π/2) (a³cos³θ)/3 dθ =(a³/3)∫(-π/2,π/2) cos²θ d(sinθ) =(a³/3) (sinθ-sin³θ/3) | (-π/2,π/2) =(a³/3) (4/3) =4a³/9=4/9 ∴a³=1 a=1