数学专业翻译请帮忙翻译一下,谢谢 无穷级数是数学分析及应用中最重要的研究工具之一. 判别无穷级数的收敛与发散一直是数学中
来源:学生作业帮 编辑:神马作文网作业帮 分类:英语作业 时间:2024/11/14 00:59:02
数学专业翻译
请帮忙翻译一下,谢谢
无穷级数是数学分析及应用中最重要的研究工具之一.
判别无穷级数的收敛与发散一直是数学中大家关注的问题.
本文准备研究判别正项级数收敛与发散的一种新的判别法.
显然这个研究,不但从理论上,还是在应用上,都是很有意义的.
通常正项级数的敛散性归结于部分和数列的有界性,即正项级数收敛的充要条件是部分和数列有界.
但用部分和数列的有界来判别级数的敛散性在使用上不方便.
本文介绍一个很有用的库默尔(kummer)判别法,由这个判别法可导出达朗贝尔判别法,拉贝判别法,伯尔特昂判别法,高斯判别法等常用的判别法.
请帮忙翻译一下,谢谢
无穷级数是数学分析及应用中最重要的研究工具之一.
判别无穷级数的收敛与发散一直是数学中大家关注的问题.
本文准备研究判别正项级数收敛与发散的一种新的判别法.
显然这个研究,不但从理论上,还是在应用上,都是很有意义的.
通常正项级数的敛散性归结于部分和数列的有界性,即正项级数收敛的充要条件是部分和数列有界.
但用部分和数列的有界来判别级数的敛散性在使用上不方便.
本文介绍一个很有用的库默尔(kummer)判别法,由这个判别法可导出达朗贝尔判别法,拉贝判别法,伯尔特昂判别法,高斯判别法等常用的判别法.
infinite series 无限级数;无穷级数
收敛与发散Convergence and Divergence
判别Discriminant
正项级数(positive series)
充要条件necessary and sufficient condition
有界性boundness
d'alembert's Discriminant达朗贝尔判别法
Infinite series is the most important reseach tool in mathematical analysis and application, and discriminant of convergence and divergence of infinite series is generally the problem been paid much attention. This paper prepare to study a new discriminant method for discriminant of convergence and divergence of positive series. It is remarkable that this study is significance in both theory and application.
Generally, the convergence and divergence of positive series depends on the boundness of partial adding sequence ,that is to say, the necessary and sufficient condition for convergence of positive series is that partial adding sequence having bound.
But using the boundness of partial adding sequence to discriminate
the convergence and divergence of series in inconvenient. We introduced useful kummer estimation in this paper, which could detrude d'alembert's Discriminant,La Bell's Discriminant,伯尔特昂Discriminant,Gauss Discriminant etc.
收敛与发散Convergence and Divergence
判别Discriminant
正项级数(positive series)
充要条件necessary and sufficient condition
有界性boundness
d'alembert's Discriminant达朗贝尔判别法
Infinite series is the most important reseach tool in mathematical analysis and application, and discriminant of convergence and divergence of infinite series is generally the problem been paid much attention. This paper prepare to study a new discriminant method for discriminant of convergence and divergence of positive series. It is remarkable that this study is significance in both theory and application.
Generally, the convergence and divergence of positive series depends on the boundness of partial adding sequence ,that is to say, the necessary and sufficient condition for convergence of positive series is that partial adding sequence having bound.
But using the boundness of partial adding sequence to discriminate
the convergence and divergence of series in inconvenient. We introduced useful kummer estimation in this paper, which could detrude d'alembert's Discriminant,La Bell's Discriminant,伯尔特昂Discriminant,Gauss Discriminant etc.
高数无穷级数问题,判别下列级数是绝对收敛,条件收敛还是发散.
请问考研数学无穷级数中,交错级数的莱布尼茨判别法中,为说明单调递减,为什么x充分大时也成立.如下图.
利用等比级数与调和级数的敛散性及无穷级数的性质,判定下列级数是否收敛
利用等比级数与调和级数的敛散性及无穷级数的性质,判定下列级数是否收敛;
根据级数收敛与发散的定义判别此题级数的收敛性.
根据级数收敛与发散的定义判别此题级数的收敛性
帮忙判断一下这个级数的是绝对收敛还是条件收敛还是发散?
判别下列级数的敛散性,请说明是绝对收敛还是条件收敛 求和(n=1到无穷)(-1)^(n-1)*n!/n^n
高数,无穷级数敛散性1/n㏑n 收敛还是发散的,为什么?
高数的无穷级数这四个怎麼求收敛还是发散,求详细回答,解答步骤
【无穷级数】正项级数收敛的证明
判别级数是绝对收敛 条件收敛还是发散