若在直线l上存在不同的三个点,使关于x的方程x^2向量OA+x向量OB+向量BC=向量0有解,(O不在l上),求实数解集
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 05:01:13
若在直线l上存在不同的三个点,使关于x的方程x^2向量OA+x向量OB+向量BC=向量0有解,(O不在l上),求实数解集
x^2*OA+x*OB+BC=0
BC=-(x^2*OA+x*OB)
BC=OC-OB
OC-OB=-(x^2*OA+x*OB)
OC= - x^2*OA - x*OB + OB
因为三点共线
- x^2 - x* +1=1
- x^2 - x*=0
x(x+1)=0
x=0或1
因为x=0时三点重合,不符合题意,舍去
所以x=-1
为什么
OC= - x^2*OA - x*OB + OB
因为三点共线
所以- x^2 - x* +1=1
x^2*OA+x*OB+BC=0
BC=-(x^2*OA+x*OB)
BC=OC-OB
OC-OB=-(x^2*OA+x*OB)
OC= - x^2*OA - x*OB + OB
因为三点共线
- x^2 - x* +1=1
- x^2 - x*=0
x(x+1)=0
x=0或1
因为x=0时三点重合,不符合题意,舍去
所以x=-1
为什么
OC= - x^2*OA - x*OB + OB
因为三点共线
所以- x^2 - x* +1=1
喜欢你这种探讨式的提问,下面来证明当A,B,C共线时,O是直线外一点,若OB=xOA+yOC ,必有x+y=1
A,B,C共线,则AB=λAC AC是非零向量,λ是实数
OB-OA=λ(OC-OA) OB=(1-λ)OA+λOC X=1-λ Y=λ
所以 x+y=1
A,B,C共线,则AB=λAC AC是非零向量,λ是实数
OB-OA=λ(OC-OA) OB=(1-λ)OA+λOC X=1-λ Y=λ
所以 x+y=1
过点(0,-1)的直线l与抛物线y=-x^2交与A,B两点,O是原点,则向量OA*向量OB=
已知向量OA=(-3,1),向量OB=(1,3),在直线y=x+4上是否存在点P,使向量PA·向量PB=0?若存在,求出
已知直线l过点D(-2,0),且与圆x^2/2+y^2=1交于不同的两点A,B,若向量OP=向量OA+向量OB,求点P的
已经过点D(-2,0)的直线l与曲线x^2/2+y^2=1交于不同两点A,B.若向量OP=向量OA+向量OB.求点P的轨
直线kx-y+1=0与圆x^2+y^2=4相交于A,B两点,若点M在圆上且有向量OM=向量oa+向量ob(o为坐标原点)
过点M(-2,0),作直线l交双曲线x^2-y^2=1于A,B不同两点,已知向量OP=向量OA +向量OB①求点P的轨迹
已知过点P(0,-2)的直线l交抛物线Y^2=4X于A,B两点,若向量OA*向量OB=4,求l方程
设i,j分别是X轴,Y轴正方向的两个单位向量,在同一条直线上有A,B,C三点,向量OA= -2i+mj,向量OB=ni+
已知椭圆x^2/4+y^2/2=1,过F1的直线l与椭圆C交于A,B两点,若椭圆C上存在点P,使得向量OP=向量OA+向
共线向量定理平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点X是直线OP上的一个动点.(1)当向量X
椭圆参数方程题目4x^2+y^2=4 过m(0,1)直线L交椭圆于A B,P满足op向量=二分之一的(oa向量+ob向量
有关向量的题目已知平面上有四点O、A、B、C,满足向量OA+向量OB+向量OC=向量0,向量OA·向量OB=向量OB·向