作业帮 > 数学 > 作业

关于用马氏距离来进行图象分类

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 07:08:45
关于用马氏距离来进行图象分类
马氏距离的详细说明以及如何用它来进行图象分类~
关于用马氏距离来进行图象分类
我们熟悉的欧氏距离虽然很有用,但也有明显的缺点.它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求.例如,在教育研究中,经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性.因此,有时需要采用不同的距离函数.
如果用dij表示第i个样品和第j个样品之间的距离,那么对一切i,j和k,dij应该满足如下四个条件:
①当且仅当i=j时,dij=0
②dij>0
③dij=dji(对称性)
④dij≤dik+dkj(三角不等式)
显然,欧氏距离满足以上四个条件.满足以上条件的函数有多种,本节将要用到的马氏距离也是其中的一种.
第i个样品与第j个样品的马氏距离dij用下式计算:
dij =(x i 一x j)'S-1(x i一xj)
其中,x i 和x j分别为第i个和第j个样品的m个指标所组成的向量,S为样本协方差矩阵.
马氏距离有很多优点.它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同.马氏距离还可以排除变量之间的相关性的干扰.它的缺点是夸大了变化微小的变量的作用.

如果还想深知的话买点模式识别于应用方面的书看看