求线性方程组的通解刘老师您好:1题目是这样的:已知三阶矩阵A的秩为2,若α1,α2,α3为非齐次线性方程组Ax=b的3个
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 10:59:20
求线性方程组的通解
刘老师您好:
1
题目是这样的:已知三阶矩阵A的秩为2,若α1,α2,α3为非齐次线性方程组Ax=b的3个解,且α1=(1,2,3)^T,α2+α3=(3,5,7)^T,则该线性方程组的通解是_______
书上答案是这样的:(1,2,3)^T+c(1,1,1)^T,由题设知未知量的个数为3,系数矩阵的秩为2,所以导出组的基础解系中只含一个解向量.所以导出组的基础解系中只含一个解向量,构成导出组的一个基础解系.
我对这个答案及其解释除了「秩为2」能看懂外,其它都一头雾水.譬如「未知量的个数为3」、「所以导出组的基础解系中只含一个解向量」、「所以导出组的基础解系中只含一个解向量」,这些结论都不知怎么得出来的.
纠错:
书上答案是这样的:(1,2,3)^T+c(1,1,1)^T,由题设知未知量的个数为3,系数矩阵的秩为2,所以导出组的基础解系中只含一个解向量.(α2+α3)-2α1为导出组的非零解,构成导出组的一个基础解系.
我对这个答案及其解释除了「秩为2」能看懂外,其它都一头雾水.譬如「未知量的个数为3」、「所以导出组的基础解系中只含一个解向量」、「(α2+α3)-2α1为导出组的非零解」,这些结论都不知怎么得出来的.
刘老师您好:
1
题目是这样的:已知三阶矩阵A的秩为2,若α1,α2,α3为非齐次线性方程组Ax=b的3个解,且α1=(1,2,3)^T,α2+α3=(3,5,7)^T,则该线性方程组的通解是_______
书上答案是这样的:(1,2,3)^T+c(1,1,1)^T,由题设知未知量的个数为3,系数矩阵的秩为2,所以导出组的基础解系中只含一个解向量.所以导出组的基础解系中只含一个解向量,构成导出组的一个基础解系.
我对这个答案及其解释除了「秩为2」能看懂外,其它都一头雾水.譬如「未知量的个数为3」、「所以导出组的基础解系中只含一个解向量」、「所以导出组的基础解系中只含一个解向量」,这些结论都不知怎么得出来的.
纠错:
书上答案是这样的:(1,2,3)^T+c(1,1,1)^T,由题设知未知量的个数为3,系数矩阵的秩为2,所以导出组的基础解系中只含一个解向量.(α2+α3)-2α1为导出组的非零解,构成导出组的一个基础解系.
我对这个答案及其解释除了「秩为2」能看懂外,其它都一头雾水.譬如「未知量的个数为3」、「所以导出组的基础解系中只含一个解向量」、「(α2+α3)-2α1为导出组的非零解」,这些结论都不知怎么得出来的.
若 A 是m乘n矩阵, 则 Ax=b 有m个方程, n个未知量
齐次线性方程组 AX=0 的基础解系含 n - r(A) (这里是 3-2 = 1) 个解向量, 这是定理, 应该知道!
若 a1,...,as 是 Ax=b 的解
则 k1a1+...+ksas 是 Ax=b 的解的充要条件是 k1+...+ks = 1
k1a1+...+ksas 是 Ax=0 的解的充要条件是 k1+...+ks = 0
这是基本结论
再问: 所以k1=-2、k2=1、k3=1,因此-2+1+1=0。那如果取k1=2、k2=1、k3=1,2-(1+1)=0 是不是也可以?但这样的话就有两个答案了。 另外α1=(1,2,3)^T应该是特解对吗?特解是随便取的吗只要是非其次线性方程组的解?还有我不明白为什么非其次线性方程组的几个解这样加加(α2+α3)-2α1就变成了导出组的解了呢?不记得课本上有这种转变为导出组的解的方法。
再答: 是 2,-1,-1, 这样也是AX=0 的解 当有无穷多解时, 特解与基础解系都不是唯一的! 这就是我上面给出的第2个结论
再问: 当Ax=b有无穷多解时,特解不是惟一的,那么当有惟一解时,特解的情况又是怎样的?怎样取这个特解?
再答: 解唯一 r(A)=r(A,b)=n 将 (A,b) 化为行最简形就得到了
齐次线性方程组 AX=0 的基础解系含 n - r(A) (这里是 3-2 = 1) 个解向量, 这是定理, 应该知道!
若 a1,...,as 是 Ax=b 的解
则 k1a1+...+ksas 是 Ax=b 的解的充要条件是 k1+...+ks = 1
k1a1+...+ksas 是 Ax=0 的解的充要条件是 k1+...+ks = 0
这是基本结论
再问: 所以k1=-2、k2=1、k3=1,因此-2+1+1=0。那如果取k1=2、k2=1、k3=1,2-(1+1)=0 是不是也可以?但这样的话就有两个答案了。 另外α1=(1,2,3)^T应该是特解对吗?特解是随便取的吗只要是非其次线性方程组的解?还有我不明白为什么非其次线性方程组的几个解这样加加(α2+α3)-2α1就变成了导出组的解了呢?不记得课本上有这种转变为导出组的解的方法。
再答: 是 2,-1,-1, 这样也是AX=0 的解 当有无穷多解时, 特解与基础解系都不是唯一的! 这就是我上面给出的第2个结论
再问: 当Ax=b有无穷多解时,特解不是惟一的,那么当有惟一解时,特解的情况又是怎样的?怎样取这个特解?
再答: 解唯一 r(A)=r(A,b)=n 将 (A,b) 化为行最简形就得到了
设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为 aη1+bη2 ..
设A是3x4矩阵,其秩为3,若£1,£2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为多少?
设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为
19.设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为 .
设A是3x4矩阵,其秩为3,若m1 m2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为?望
设4阶矩阵A的秩为3,η1,η2为非齐次线性方程组Ax =b的两个不同的解,c为任意常数,则该方程组的通解为
已知m×n矩阵A的秩为n-1,α1,α2是齐次线性方程组AX=0的两个不同的解,k为任意常数,则方程组AX=0的通解为(
设A是5×3的矩阵,且秩A=(2),已知n1和n2是非其次线性方程组AX=B的两个相异的呃解,则AX=B的通解为?
刘老师您好,A是n阶矩阵,对于齐次线性方程组AX=0,如r(A)=n-1,且代数余子式A11不等于0,则AX=0的通解是
已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且向a,b,c是3个不同解向量,则通解是
已知A是m*4阶矩阵,R(A)=3,且A的每行元素之和等于零,则齐次线性方程组AX=0的通解为
.设A为n阶矩阵,秩(A)=n-1,,是齐次线性方程组Ax=0两个不同的解,则Ax=0的通解是