作业帮 > 数学 > 作业

已知:△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D.求证:DE=DB=DC

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 16:42:44
已知:△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D.求证:DE=DB=DC
已知:△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D.求证:DE=DB=DC
首先要知道三角形内心的一个性质.以该三角形为例:
角AEB=90+角C/2.(1)
证明很简单如下:
角AEB+ 角EAB+角EBA=180

角AEB+ 角A/2+角B/2=180.(2)
又A+B+C=180所以A/2+B/2+C/2=90.(3)
带入(2)就有
角AEB=90+角C/2
然后回到该题:
三角形EBD中
角EBD=角EBC+角CBD
=B/2+角CAD
=B/2+A/2
而有三角形内心性质(1)有
角AEB=90+角C/2
所以补角
角BED=180-角AEB
=90-C/2
=B/2+C/2 (利用(3))
=角EBD
即三角形EBD为等腰三角形
所以
ED=BD
同理三角形EDC中
DE=DC
所以
BD=ED=DC