作业帮 > 数学 > 作业

设数列{An}满足An+1=An²-nAn+1,n=1,2,3,···;当A1=2时,求出A2,A3,A4,A

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 04:28:26
设数列{An}满足An+1=An²-nAn+1,n=1,2,3,···;当A1=2时,求出A2,A3,A4,A5;
并由此猜测出{An}的一个通项
(要有步骤)
设数列{An}满足An+1=An²-nAn+1,n=1,2,3,···;当A1=2时,求出A2,A3,A4,A
a2=2^2-1*2+1=3
a3=3^2-2*3+1=4
a4=4^2-3*4+1=5
a5=5^2-4*5+1=6
猜测an=n+1
以下用数学归纳法证明
由a1=2=1+1知n=1时an=n+1成立
设n=k(k属于正整数)时an=n+1成立即ak=k+1
则当n=k+1时,因为a(n+1)=an²-n*an+1,
所以a(k+1)=ak²-k*(k+1)+1
=(k+1)²-k*(k+1)+1
=k²+2k+1-k²-k+1
=k+2
综上,an=n+1成立