设数列{An}满足An+1=An²-nAn+1,n=1,2,3,···;当A1=2时,求出A2,A3,A4,A
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 04:28:26
设数列{An}满足An+1=An²-nAn+1,n=1,2,3,···;当A1=2时,求出A2,A3,A4,A5;
并由此猜测出{An}的一个通项
(要有步骤)
并由此猜测出{An}的一个通项
(要有步骤)
a2=2^2-1*2+1=3
a3=3^2-2*3+1=4
a4=4^2-3*4+1=5
a5=5^2-4*5+1=6
猜测an=n+1
以下用数学归纳法证明
由a1=2=1+1知n=1时an=n+1成立
设n=k(k属于正整数)时an=n+1成立即ak=k+1
则当n=k+1时,因为a(n+1)=an²-n*an+1,
所以a(k+1)=ak²-k*(k+1)+1
=(k+1)²-k*(k+1)+1
=k²+2k+1-k²-k+1
=k+2
综上,an=n+1成立
a3=3^2-2*3+1=4
a4=4^2-3*4+1=5
a5=5^2-4*5+1=6
猜测an=n+1
以下用数学归纳法证明
由a1=2=1+1知n=1时an=n+1成立
设n=k(k属于正整数)时an=n+1成立即ak=k+1
则当n=k+1时,因为a(n+1)=an²-n*an+1,
所以a(k+1)=ak²-k*(k+1)+1
=(k+1)²-k*(k+1)+1
=k²+2k+1-k²-k+1
=k+2
综上,an=n+1成立
设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)
数列an满足a1+2a2+3a3+...+nan=(n+1)(n+2) 求通项an
若数列{an}满足a1+2a2+3a3+~~+nan=n(n+1)(2n+1),则an=
已知数列(an)满足a1+2a2+3a3+...+nan=n(n+1)(n+2)求an
设数列【an】满足a1=1,3(a1+a2+a3+······+an)=(n+2)an,求通项an
设数列an满足a1=a2=1,a3=2,且对正整数n都有an·an+1·an+2·an+3=an+an+1+an+2+a
已知数列{an}满足a1+a2+a3+...+an=n^2+2n.(1)求a1,a2,a3,a4
已知数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2),则a1+a2+a3+…+an=多少?
设数列{an}满足a1+3a2+3^2a3+.3^n-1×an=n/3,a∈N+.
已知在数列{an}中,a1=1,nan+1=2(a1+a2+a3+...+an)(n∈N*)(1)求a2,a3,a4(2
设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1) (1)求a2,a3,a4,并求出数列{an}的通
设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1) (1)求a2,a3,a4,并求出数列{an}的