作业帮 > 数学 > 作业

已知定义在R上的函数f(x)=x^2(ax-3),其中a为常数

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 23:31:09
已知定义在R上的函数f(x)=x^2(ax-3),其中a为常数
若函数g(x)=f(x)+f'(x) ,x∈[0,2],在x=0处取得最大值,求 :
正数 a的取值范围
已知定义在R上的函数f(x)=x^2(ax-3),其中a为常数
f(x)=x^2(ax-3)
f'(x)=2x(ax-3)+ax^2;
g(x)=f(x)+f'(x)
=x^2(ax-3)+2ax^2-6x+ax^2
=ax^3+3ax^2-3x^2-6x.
g'(x)=3ax^2+(6a-6)x-6
根据题意,x∈[0,2],在x=0处取得最大值,说明g'(x)的对称轴x=(1-a)/a>=2,所以:
a的取值范围:
0