作业帮 > 数学 > 作业

在四面体ABCD中,设AB=1,CD=2且AB⊥CD,若异面直线AB与CD间的距离为2,则四面体ABCD的体积为(  )

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 16:28:53
在四面体ABCD中,设AB=1,CD=2且AB⊥CD,若异面直线AB与CD间的距离为2,则四面体ABCD的体积为(  )
A.
1
3
在四面体ABCD中,设AB=1,CD=2且AB⊥CD,若异面直线AB与CD间的距离为2,则四面体ABCD的体积为(  )
∵AB垂直于CD,
∴可以做一包含AB的平面α,
使平面α与线段CD垂直.
这样α将四面体剖成两个小的四面体.
将截面视为底,CD视为两个四面体高的总和,
那么两个小四面体的体积之和即为四面体ABCD的体积:
V=
1
3×(
1
2×2×1)×2=
2
3
故选C