已知f(x)=1/3X^3+bx^2+cx+d在区间(-1,3)上是减函数,在区间(负无穷,-1),(3,正无穷)上是增
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 19:08:16
已知f(x)=1/3X^3+bx^2+cx+d在区间(-1,3)上是减函数,在区间(负无穷,-1),(3,正无穷)上是增函数
①求f(x)解析式
①求f(x)解析式
对f(x)求导得:
f(x)'=x^2+2bx+c
令其大于等于0,则有:
f(x)'=x^2+2bx+c≥0
这样可解得其增区间.由于题中告诉增区间为(-∞,-1]U[3,+∞),则可知:
x=-1和x=3为上式的解.代入得:
1-2b+c=0
9+6b+c=0
解得:
b= -1 c= -3
故解析式为:
f(x)=1/3X^3-x^2-3x+d
应该还有一个条件吧?思路就是这样的了,楼主把另外一个条件代入就能求出d的值,然后解析式就求得了.
f(x)'=x^2+2bx+c
令其大于等于0,则有:
f(x)'=x^2+2bx+c≥0
这样可解得其增区间.由于题中告诉增区间为(-∞,-1]U[3,+∞),则可知:
x=-1和x=3为上式的解.代入得:
1-2b+c=0
9+6b+c=0
解得:
b= -1 c= -3
故解析式为:
f(x)=1/3X^3-x^2-3x+d
应该还有一个条件吧?思路就是这样的了,楼主把另外一个条件代入就能求出d的值,然后解析式就求得了.
已知f(x)=ax^3+bx^2+cx在区间(0,1)上是增函数,在区间(负无穷,0),(1,正无穷)上是减函数.又f'
已知f(x)=ax³+bx²+cx在区间[0,1]上是增函数,在区间(负无穷,0)(1,正无穷)
已知f(x)=ax^3+bx^2+cx在区间[0,1]上是增函数,在区间[-无穷,0],[1,+无穷]上是减函数,又f'
已知f(x)=x^3+bx^2+cx+d在(负无穷到0的开区间)上是增函数,在(0到2的闭区间上)是减函数,且方程f(x
已知函数f(x)=-x平方-ax+3在区间(负无穷,-1]上是增函数.
已知函数f(x)=-x平方-ax+3在区间(负无穷,-1]上是增函数
已知函数f(x)等于x的三次方-3ax的平方+2x-1,若f x 在区间(负无穷,正无穷)上是增函数,求实数a的取值范
如果二次函数y=3x^2+mx+2在区间(负无穷,-1)上是减函数,在区间(-1,正无穷)上是增函数,则m是多少
证明f(x)=3x+2在负无穷到正无穷的区间上是增函数
证明函数f(x)=3/x在区间(负无穷,0)上是减函数.
如何使函数f(x)=ax^2-4bx+1在区间[1,正无穷)上是增函数?
已知f(x)=ax^3+bx^2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数